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Abstract—Data envelopment analysis (DEA) is a non- 

parametric method for relative efficiency evaluation of decision 

making units described by multiple inputs and multiple 

outputs. It is based on solving linear programming problems. 

Since 1978 when basic DEA model was introduced many its 

modifications were formulated. Two-stage or, in more general, 

multi-stage models with series or parallel structure (network 

models) belong among them. Standard DEA models are based 

on deterministic inputs and outputs. The paper deals with DEA 

network models under the assumption that inputs and/or 

outputs are continuous interval variables. Under this 

assumption the efficiency scores of decision making units are 

random variables as well. Several approaches for description of 

random efficiency scores were developed for standard DEA 

models but only few for models with network structure. They 

are mostly based on formulation of linear optimization 

problems. Another methodological approach for DEA models 

with interval data is simulation. The paper compares results 

given by simulation experiments and by optimization DEA 

network models with interval data. 

 
Index Terms—Data envelopment analysis, efficiency, interval 

data, two-stage model.  

 

I. INTRODUCTION 

Data envelopment analysis (DEA) is a non-parametric 

technique for evaluation of relative efficiency of decision 

making units characterized by multiple inputs and outputs. 

Let us suppose that the set of decision making units (DMUs) 

contains n elements. The DMUs are evaluated by m inputs 

and r outputs with input and output values xij, i = 1, 2,…, m, 

j = 1, 2,…, n and ykj, k = 1, 2,…, r, j = 1, 2,…, n, respectively. 

The efficiency of the q-th DMU can be expressed as the 

weighted sum of outputs divided by the weighted sum of 

outputs with weights that reflect the importance of single 

inputs vi, i = 1, 2,…, m, and outputs uk, k = 1, 2,…, r as 

follows: 
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Standard CCR input oriented DEA model formulated by 

Charnes et al. [1] consists in maximization of efficiency score 

of the DMUq subject to constraints that efficiency scores of 

all other DMUs are lower or equal than 1. The linearized 
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form of this model is as follows: 
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If the optimal value of the model (1) *
q = 1 then the DMUq 

is CCR efficient and it is lying on the CCR efficient frontier, 

otherwise the unit is not CCR efficient. The model (1) is often 

referenced as primal CCR model. Its dual form is more 

convenient from the computational point of view and its 

mathematical model is as follows: 

Minimize  

 q  
subject to (2)
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 j ≥ 0,  j = 1,2,…,n, 

 

where j, j = 1, 2,…, n are weights of DMUs, si, i = 1, 2,…, 

m, and s+
k, k = 1, 2,…, r  are slack (surplus) variables and q is 

the efficiency score of the DMUq which expresses necessary 

reduction of inputs in order this unit becomes efficient. If the 

optimal value of model (1) *
q = 1, then the DMUq is CCR 

efficient and it is lying on the CCR efficient frontier, 

otherwise the unit is not CCR efficient. Model (1) is CCR 

model with input orientation, i.e. this model looks for 

reduction of inputs in order to reach the efficient frontier. The 

output oriented modification of the presented model is 

straightforward. The BCC model under variable returns to 

scale assumptions originally presented in Banker et al. [2] 

extends the formulation (1) by convexity constraint ∑jj = 1. 

More information about DEA models and about their 

numerous modifications including MS Excel solver for DEA 

models is included in Zhu [3]. 

DEA models are applied very often in many fields of 

human activities. They find numerous applications in 
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evaluation of efficiency in public sector (education, health 

care, regional studies, etc.), finance (evaluation of bank and 

insurance companies’ branches), industries (branches of 

public or private companies), and many other fields. Several 

applications in the Czech Republic are described e.g. in 

Dlouhy et al. [4], and Grmanova and Jablonsky [5].      

The above presented introductory DEA models measure 

efficiency of the transformation of m inputs into r outputs in 

one stage and under the assumption that all data are 

deterministic but the production process is often more 

complex and the data may be stochastic. The paper 

formulates two-stage network model with serial structure 

where outputs of the first stage can be taken as inputs of the 

second stage and offers its solution under the assumption that 

all inputs and outputs are random variables.  

The paper is organized as follows. The next section 

contains basic formulation of two-stage DEA model with 

interval data and discusses possibility of its solution using 

optimization and simulation models. Section 3 presents 

results of numerical experiments based on the real data set – 

evaluation of efficiency of branches of one of the Czech 

mobile phone operators. Final part of the paper summarizes 

presented results and discusses possible directions for future 

research. 

 

II. TWO-STAGE DEA MODEL WITH INTERVAL DATA 

Models (1) and (2) measure the relative efficiency of 

one-stage transformation of m inputs into r outputs. The 

transformation of inputs into final outputs can be considered 

as a two- or even multi-stage process. The inputs of the first 

stage are transformed into its outputs and all or at least some 

of these outputs are used as inputs of the second stage that 

produces final outputs. The two-stage production process can 

be expressed as it is on Fig. 1. 
 

 

       Stage 1            Stage 2 

 

 

 xij, i = 1,2,…,m ykj, k = 1,2,…,r  zlj, l = 1,2,…,p 

          j = 1,2,…,n 
 

Fig. 1. Two-stage production process. 

 

Let us denote the input values of the first stage xij, i = 1, 

2,…, m, j = 1, 2,…, n and the output values of the first stage 

ykj, k = 1, 2,…, r, j = 1, 2,…, n. Let us suppose that all outputs 

of the first stage are used as inputs of the second stage and 

that the final output values are zlj, l = 1, 2,…, p, j = 1, 2,…, n.  

Two-stage DEA models are widely analyzed and discussed 

within professional community. Theoretical issues can be 

found e.g. in Liang et al. [6]. Among numerous case studies 

the papers Jablonsky [7] and Paradi et. al. [8] can be 

mentioned. Two-stage DEA model under constant returns to 

scale assumption can be formulated according to Chen et al. 

[9] as follows: 

 

Minimize  
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 j ≥ 0, μ j ≥ 0,  j = 1,2,…,n, 

 

where j and μ j, j = 1,2,…,n, are weights of the DMUs in the 

first and second stage, respectively, θq and φq are efficiency 

scores of the DMUq in the first and second stage and kqy~ are 

variables to be determined. The DMUq is recognized as 

efficient by model (3) if the efficiency scores in both stages 

are θq = 1 and φq = 1, respectively, and the optimal objective 

value of the presented model is 0. The inefficient units can be 

ranked relatively by the following geometric average 

efficiency measure: 

  

 eq = (θq / φq)
1/2                              (4) 

 

Inputs and outputs in both stages usually reflect past values 

of the DMUs. That is why the model (3) supposes that the 

inputs and outputs of the units are given as deterministic 

values. For evaluation and estimation of future efficiency of 

the DMUs it can be useful to consider inputs and outputs as 

random variables. They can be given as interval values or 

more generally as random variables with defined continuous 

probabilistic distribution. Approaches for dealing with 

random data in DEA can be divided into two groups – 

optimization and simulation. Optimization approaches are 

based on solving one or several linear programs and result to 

an index or indices for each DMU that can be used for their 

ranking. One of the optimization approaches is presented in 

Despotis and Smirlis [10]. It supposes that the corresponding 

values for inputs and outputs are continuous variables with 

uniform distribution defined over intervals xij  <xL
ij, x

U
ij>, ykj 

 <yL
kj, y

U
kj> and zlj  <zL

lj, z
U

lj>. Efficiency scores of the 

DMUs under the assumption of interval inputs and outputs 

are random variables defined over an interval. The lower 

bound for efficiency score in both stages is given by using of 

the worse inputs and outputs for the evaluated unit DMUq and 

the best characteristics for all the other units and similarly the 

upper bound is defined by using the best characteristics of the 

evaluated unit and the worse ones for all the other units. The 

optimization model for deriving the lower bound for 

efficiency score of the unit DMUq in the first stage of the 

production process is as follows: 

 

Minimize  

 q  

subject to  (5)  
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The appropriate model for calculation of upper bound of 

the efficiency score of the unit DMUq is as follows: 

 

Minimize  

 q  

subject to  (6)  
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According to the values of the lower and upper bounds of 

efficiency scores in each of two stages the DMUs can be 

divided into three subsets E1, E2 and E3: 

E1: DMUs always efficient – this subset contains units that 

are efficient in any case, i.e. even their inputs and outputs 

are on their worst values and the inputs and outputs of 

other units are on their best bounds. 

E2: DMUs conditionally efficient by suitable adjusting of 

inputs and outputs of all the units (upper bound of their 

efficiency score is 1). 

E3: DMUs never efficient (upper bound of their efficiency 

score is lower than 1). 

This approach can lead to quite different results, e.g. a 

DMU can belong to the set E1 (always efficient) in the first 

stage and to the set E2 or even E3 (never efficient) in the 

second stage. In order to evaluate the efficiency of both 

stages simultaneously using model (4) the optimization 

model must consider random variables of first stage inputs’ 

and final outputs and intermediate characteristics use in their 

average level. The model (3) is then modified according to 

the models (5) and (6), i.e. using lower/upper bounds for 

characteristics in the first and last group of constraints. The 

results of the modified model (3) allow dividing of the units 

into three classes as above: always efficient (efficient in both 

stages), never efficient (inefficient in both stages), and 

conditionally efficient.  

One of the disadvantages of the optimisation approach for 

dealing with random inputs and outputs in DEA models 

consists in the necessity to consider just interval values 

(uniform distribution). Except optimisation models simple 

simulation tools can be used to analyse the presented problem 

under a more general assumptions. Simulation approach is 

more time consuming than the optimisation one but it gives 

much more information that can be useful for a detailed 

analysis of the problem. This approach can be simply 

described by the following steps: 

1) Generation of all random variables of the model. This step 

can be simply realized within MS Excel environment by 

means of built-in functions or VBA procedures. 

2) Modified two-stage DEA models (3) are solved with the 

values generated in the previous step. In our experiments 

the LP solver included in the LINGO modelling system 

was used which is powerful enough and allows a simple 

linking with MS Excel sheets. 

3) Information from the random trials are processed and 

evaluated by means of suitable software tools. A MS 

Excel add-in application for Monte Carlo experiments 

(e.g. Crystal Ball or @RISK) is a possible alternative.  

Simulation trials give much more information about 

distribution of efficiency scores of particular units comparing 

to above described optimization procedure. Results given by 

both – optimization and simulation – procedure are compared 

on a simple example in the next section. 

 

III. COMPUTATIONAL EXPERIMENTS 

Applications of DEA models are numerous. Results of the 

above formulated models will be illustrated on an example of 

67 selling branches of one of the Czech mobile phone 

operators. The model for efficiency analysis is presented on 

Fig. 2. The following inputs, intermediate characteristics 

(outputs of the first stage and inputs of the second one) and 

final outputs are taken into account: 

Inputs: 

 Operational expenses (rental costs, wages and 

overheads), and 

 Number of business hours per year is an important 

characteristic influencing total number of transactions 

(one of the outputs of the first stage). 

Intermediate characteristics: 

 Number of transactions of current customers, and 

 Number of transactions of new customers. 

Outputs: 

 Financial contribution of the branch in CZK (Czech 

crowns). 

 

 
Fig. 2. Model for efficiency analysis of selling branches. 

 

The data for all 67 branches are available with a certain 

level of uncertainty. That is why the fixed data from 2010 are 

used for numerical experiments together with modified set of 

data. In this modification we suppose that the data are 

independent continuous random variables with uniform 

distribution over interval <0.95x, 1,10x>, where x is the 

original fixed value. Computational experiments are divided 

into two phases. 

1) The first phase is evaluation of efficiency of the branches 

in two separated stages using the models (5) and (6) under 
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variable returns to scale assumption. Lower and upper 

bounds for efficiency scores of the branches in both 

stages are the main results of applied models. The 

branches can be ranked according to several criteria – e.g. 

geometric average of maximum or minimum efficiencies 

in both stages. The lower and upper bounds for efficiency 

scores given by the models (5) and (6) for a selection of 

10 branches are presented in Table I. According to the 

results of the first stage there is only one unit (DMU2) that 

is always efficient, 6 units are conditionally efficient and 

the remaining ones are always inefficient. Similar 

conclusions hold for the second stage – again the unit 

DMU2 is always efficient, other 4 units are conditionally 

efficient and 5 units are inefficient even they work on 

their best bounds. 

 
TABLE I: RESULTS FOR TWO SINGLE STAGES 

DMU 
1st stage 2nd stage 

lower upper lower upper 

1 0.9014 1.0000 0.3382 0.6128 

2 1.0000 1.0000 1.0000 1.0000 

3 0.7139 0.9889 0.6986 1.0000 

4 0.8948 1.0000 0.6082 1.0000 

5 0.8572 1.0000 0.5228 0.9757 

6 0.6191 1.0000 0.4905 0.8589 

7 0.5876 1.0000 0.5133 0.9546 

8 0.5662 0.8217 0.9951 1.0000 

9 0.7996 1.0000 0.3609 1.0000 

10 0.5745 0.9452 0.4094 0.7141 

 

2) Evaluation of efficiency using modified model (3), i.e. 

considering both stages simultaneously. Optimization 

approach leads to lower and upper bounds for efficiency 

scores as above. Simulation approach was realized with 

uniformly generated data of all units and optimization run 

with model (3). After 50 trials some information about 

distribution of efficiency scores in both stages and overall 

efficiency are given. Table II contains information about 

lower and upper bounds of efficiency scores given by 

modified model (3) - θq and φq values are synthesized 

using formula (4). Next three columns present similar 

information from 50 simulation trials as described in 

previous section of the paper – minimum, maximum and 

average efficiency scores calculated using the application 

of models (5) and (6). 

 
TABLE II: RESULTS FOR TWO- STAGE MODEL 

DMU 
Optimization simulation (50 trials) 

lower upper min max avg 

1 0.6138 0.7233 0.6174 0.7212 0.6635 

2 1.0000 1.0000 1.0000 1.0000 1.0000 

3 0.6491 0.8865 0.6814 0.8302 0.7507 

4 0.7873 0.9537 0.8067 0.9487 0.8629 

5 0.6326 0.8982 0.6908 0.8906 0.7813 

6 0.5826 0.7564 0.6155 0.6994 0.6514 

7 0.6295 0.8317 0.6832 0.7646 0.7240 

8 0.7417 0.8796 0.7683 0.8444 0.8164 

9 0.4936 0.8246 0.4955 0.8124 0.5865 

10 0.5803 0.7201 0.5947 0.6770 0.6324 

 

The comparison of results given by two presented 

approaches is included in Table III. The first two columns of 

this table contain ranking of DMUs by efficiency scores 

calculated by means of the models (5) and (6) in two single 

stages. The column “Geom” contains geometric average of 

two values – simple average of lower and upper bounds of the 

first stage (first two columns of Table I) and simple average 

of lower and upper bounds of the second stage (last two 

columns of Table I). Ranking of DMUs according to this 

criterion is presented in the next column of Table III. In is 

really questionable what criterion could be used for ranking 

of DMUs when both stages are taken as independent. It is 

clear that the most efficient unit is the unit DMU2 that is 

always efficient in both stages. Next rankings are occupied 

by units that are conditionally efficient at least in one of the 

two stages. 

 
TABLE III: COMPARISON OF RESULTS 

DMU 
Two single stages Two-stage model 

Geom. Rank Optim Rank Simul Rank 

1 0.6556 9 0.6686 8 0.6635 7 

2 1.0000 1 1.0000 1 1.0000 1 

3 0.7847 4 0.7678 4 0.7507 5 

4 0.8496 2 0.8705 2 0.8629 2 

5 0.8038 3 0.7654 5 0.7813 4 

6 0.6650 8 0.6695 7 0.6514 8 

7 0.6801 7 0.7306 6 0.7240 6 

8 0.6931 6 0.8107 3 0.8164 3 

9 0.7422 5 0.6591 9 0.5865 10 

10 0.5695 10 0.6502 10 0.6324 9 

 

The remaining columns of Table III contain rankings of 

DMUs by the middle of the interval given by lower and upper 

bounds from optimization runs on the one side and by 

average characteristics (4) from simulation approach on the 

other side. It is clear that both rankings are very close each 

other but, of course, the simulation procedure offers much 

more information to decision makers than single optimization 

approach. Very interesting may be the information about the 

distribution of efficiency scores. This paper does not contain 

any more detailed information about this distribution due to 

the limited space of the paper.  

Comparison of results given by two single models for 

evaluation of efficiency and the two-stage model presented in 

Table III shows more significant differences in final ranking 

of DMUs – e.g. DMU9 is ranked as fifth unit in two single 

models approach and it is one of the worse DMUs when 

two-stage model is applied. That is why it is of a high 

importance to study network models instead to analyze the 

efficiency independently in two single stages. 
 

IV. CONCLUSIONS 

Evaluation of efficiency of network production systems is 

a very complex task. The paper is focused on a simplest 

system which is two-stage serial DEA model. Under the 

assumption of deterministic data there are formulated several 

DEA models for efficiency evaluation. In case of stochastic 

data one can use optimization approach that offer information 

about the worse and the best efficiencies (under worse and 

best conditions for the evaluated unit) only. The same 

information can be given by simulation approach but except 

this many other results can be of interest for decision makers. 

Both approaches are illustrated on a simple numerical 

example of a real-world nature. Further research will be 

focused on more complex network systems with serial or 

parallel structures. 
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