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Abstract—We report a modeling study of short term interest 

rates using the Hidden Markov Model (HMM) and the 

Hull-White (HW) model. For this purpose, we modify the 

original HW model by adding a regime variable to its 

instantaneous forward function. This variable is defined by the 

regimes of the short term interest rate which are found by a 

two-state HMM. The combination of the HMM and the HW 

model for generating interest rate predictions results in a 

significant improvement, reducing the error of the estimations 

by about 50% compared to that of using HW alone. 

Furthermore, the errors of the simulations using HMM and 

HW have a smaller standard deviation compare with which of 

using the HW. Adjusted R-square results also show that the 

regime variable is significant. This improvement to the 

short-term interest rate model has a substantial impact on 

financial economics and related fields.  

 

Index Terms—Interest rate, Hidden Markov Model, 

simulations, Hull-White, forward rate, regimes. 

 

I. INTRODUCTION 

The short-term interest rate (short-rate) is an important 

input for many financial models, especially for financial 

derivative models, but it is difficult to model accurately. The 

famous Black-Scholes Model for pricing options is based 

upon an assumption of a constant short rate. However, in 

reality, the short rate is not constant, as it fluctuates as 

economic conditions change. 

Classical short rate models, as in [1], [2] assume the short 

rate follows a Brownian motion process, which, 

unfortunately, is not supported by empirical evidence. Some 

of the limitations of these early models were addressed in [3] 

with the development of the Hull and White Extended 

Vasicek and Hull and White Extended CIR models. These 

extensions add more flexibility to the short interest rate 

models. However, we also experience jumps in the time 

series of US real interest rates as a result of important 

macroeconomic changes, most recently in the 2008 economic 

crisis. Researchers tried to accommodate these jumps by 

allowing for the possibility of regime-switching in short-term 

interest rate models. Garcia and Perron [4] modeled the short 

rate in this manner. These approaches added too much 

structure to short rate models which most of the time resulted 

in data over-fitting. Also, the estimations of these models 

were excessively expensive. The forward rate is the most 
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important component of the Hull-White model, but has 

largely been ignored in research. Typically, the forward 

curve is assumed to be a function of time. However, it is also 

subject to regime changes due to changes in the 

macroeconomic environment. Adding dummy regime 

variables to the forward function is a simple relaxation of the 

Hull-While model. In this paper, we consider the influence of 

regimes of the forward rate on the short-term interest rate in 

the Hull-White model. First, we use the Hidden Markov 

Model (HMM) to find regimes of the interest rate and code 

these regimes as dummy variables in the prediction of the 

forward rate used to generate the short-term interest rate. 

Using HMM to find regime variables to add to the forward 

rate function of the Hull-While model is a simple 

modification but it makes a significant improvement to the 

HW model. The modification will allow for more accurate 

short rate modeling, which is critical in the pricing of annuity 

contracts, investment outcomes and decisions, and in other 

relevant models in actuarial science and financial 

mathematics. 

The remainder of this paper is organized as follows. 

Section Two presents an overview of the Hidden Markov 

Model. Section Three provides a brief introduction of the 

Hull-White model. The methodology and results of using 

HMM and HW models to simulate the short term interest are 

described in Section Four. Section Five concludes the paper. 

 

II. OVERVIEW OF THE HIDDEN MARKOV MODEL 

The Hidden Markov Model (HMM) was developed by 

Baum and Petrie in 1966 in [5]. This is a stochastic signal 

model based upon the following assumptions: 

 The observation at time t was generated by some process 

whose state is hidden. 

 The hidden states satisfy the first-order Markov property. 

 The transition matrix 𝐴 =  𝑎𝑖𝑗   is constant, where 𝑎𝑖𝑗  is 

the probability of being in state 𝑆𝑗  at time 𝑡 given that the 

observation at time 𝑡 − 1 is in state 𝑆𝑖 . 

 The observation at time 𝑡  of a HMM has a particular 

probability distribution corresponding to a possible state. 

The observation probability matrix is denoted by 𝐵. 

The parameters of a HMM are the matrices A and B and the 

vector p. For convenience, we use compact notation for the 

parameters: },,{ pBA . If the observation probability 

assumes the Gaussian distribution, then 

),,()()( iikktii vNvObkb  , where 
i   and 𝜎𝑖  are the 

mean and variance of the distribution corresponding to the 

state 
iS , respectively, and N is Gaussian density function. In 
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this case, the parameters of HMM are },,,{ pA ii   , 𝑖 = 1,2. 

Since its introduction in 1966, HMM underwent many 

developments. The innovations primarily involved 

calibration of the model's parameters. Baum and his 

colleagues published a maximization method to calibrate 

HMM's parameters using a single observation in [6]. Sondhi 

introduced a maximum likelihood estimation method for 

HMM with multiple observation training, assuming that all 

the observations are independent in [7]. In 2000, Li, Parizeau, 

and Plamondon [8] presented a HMM training for multiple 

observation sequences without the assumption of 

independence of observations. More details about this model 

and its algorithms can be found in [9] and [10]. 

 HMM finds applications in many different areas such as 

speech recognition systems, computational molecular 

biology, and financial market predictions. Researchers have 

applied the Hidden Markov Model to forecast stock prices. 

Hassan and Nath [11] used HMM to predict the stock price 

for interrelated markets. Kritzman, Page, and Turkington [12] 

applied HMM with two states to predict regimes in market 

turbulence, inflation, and industrial production index. 

Guidolin and Timmermann [13] used HMM with four states 

and multiple observations to study asset allocation decisions 

based upon regime switching in asset returns. Ang and 

Bekaert [14] applied the regime shift model (another name of 

HMM) for international asset allocation. Nguyen [10] used 

HMM with both single and multiple observations to forecast 

economic regimes and stock prices. B. Nobakht, C. E. Joseph 

and B. Loni [15] implemented HMM by using multiple 

observation sequences (open, close, low, high) prices of a 

stock to predict its closing price. Nguyen and Nguyen [16] 

used HMM for single observation data to predict regimes of 

some economic indicators and made stock selections based 

upon the performances of these stocks during the predicted 

regimes. 

Recently, Elliott and Wilson [17] used HMM to model the 

short-term interest rate by assuming that the mean-reverting 

level follows a finite-state, continuous-time Markov chain. 

Erlwein and Mamon [18] implemented HMM for the interest 

rate model presented by Elliott and Wilson [17] for a 

financial data set of 30-day Canadian Treasury bill yields. In 

this paper, we combine HMM with a standard model for the 

interest rate, the Hull-White model, to generate predictions 

for the short-term interest rate and compare the results with 

the results obtained by only using the Hull-White model. 

 

III. OVERVIEW OF THE HULL-WHITE MODEL 

The short-term interest rate plays a key role in the 

modeling of financial securities, derivatives, and other 

interest rate contingent claims. Beginning with Vasicek [2], 

many models for the short-rate have been proposed. Each 

model has its advantages and limitations. Two of the earliest 

models were developed in [1], [2]. Some of the limitations of 

these early models were addressed by Hull and White [3] 

with the development of the Hull and White Extended 

Vasicek and Hull and White Extended CIR models. We 

provide a brief description of the Vasicek, CIR, and Hull and 

White models. A detailed description of these and other 

models for the short-rate can be found in [19]. 

In the Vasicek model, the risk neutral dynamics are given 

by the stochastic differential equation 

𝑑𝑟 𝑡 = 𝑘 𝜃 − 𝑟 𝑡  𝑑𝑡 + 𝜎𝑑𝑊(𝑡) 

 

with 𝑟 0 = 𝑟0  and 𝑘, 𝜃, 𝜎, 𝑟 0  are positive constants. 

The model is mean-reverting to 𝜃  and implies a normally 

distributed short-rate. Because the short-rate is normally 

distributed, the Vasicek model is analytically tractable and 

produces analytical formulas for bond and option prices. The 

major drawbacks of the Vasicek model are its inability to 

match the term structure observed in the market and the 

possibility of predicting negative rates. 

To address and eliminate the possibility of negative rates, 

Cox, Ingersoll, and Ross [1] proposed a short-rate model of 

the form 
 

𝑑𝑟 𝑡 = 𝑘 𝜃 − 𝑟 𝑡  𝑑𝑡 + 𝜎 𝑟 𝑡 𝑑𝑊 𝑡 , 
 

with 𝑟 0 = 𝑟0 > 0  and 𝑘, 𝜃, 𝜎, 𝑟 0  are positive 

constants. This CIR model shares the advantage of analytic 

tractability as the short-rate in this model has a noncentral 

chi-square distribution. The CIR model also has the 

advantage of ensuring predicted rates will never be negative. 

However, it shares the drawback of the Vasicek model that 

the term structure of the short-term rate can’t be matched. 

To remedy this issue with the Vasicek and CIR models, 

Hull and White [3] proposed extensions of both models that 

are consistent with the current term structure of interest rates. 

We will examine a version of the Hull-White Extended 

Vasicek model, as it is the focus of this paper and has the 

advantage of being analytically tractable. The stochastic 

differential equation describing the Hull-White Extended 

Vasicek model is 
 

𝑑𝑟 𝑡 = 𝑘 𝜃 − 𝑎(𝑡)𝑟 𝑡  𝑑𝑡 + 𝜎(𝑡)𝑑𝑊 𝑡 , 
 

where 𝑎(𝑡), 𝜎(𝑡), and 𝜃(𝑡) are deterministic functions of 

time and 𝜃(𝑡) is chosen to fit the initial term structure of the 

interest rates and 𝜎 𝑡  is to fit the current spot or forward-rate 

volatility term structure. As noted in [3] and [19], if an exact 

calibration to the term structure of interest rates is desired, 

then the perfect fitting of the volatility structure may be 

problematic. Because of this, we follow the development of a 

simplified model, analyzed by Hull and White [3], which has 

the form 
 

𝑑𝑟 𝑡 =  𝜃 − 𝑎 𝑟 𝑡  𝑑𝑡 + 𝜎𝑑𝑊 𝑡 ,                (1) 
 

where 𝑎 and 𝜎 are positive constants and 𝜃(𝑡) is chosen to 

exactly fit the current term structure of interest rates observed 

in the market. We will refer to this as the Hull-White 

one-factor model. Because this model is an extension of the 

Vasicek model, it implies a normal distribution for the short 

rate process 𝑟(𝑡) and thus is analytically tractable. However, 

it has the drawback of the possibility of negative rates. 

Le  Ω, 𝐹, 𝑄  be a probability space. Define the market 

instantaneous forward rate at time 0 for maturity 𝑇 as 
 

𝑓𝑀 0, 𝑇 = −
𝜕𝑃𝑀(0, 𝑇)

𝜕𝑇
. 

 

Let 𝐸(. |𝐹𝑠)and 𝑉𝑎𝑟(. |𝐹𝑠) be the expectation and variance 

conditional on the 𝐹𝑠  and 𝜎 − 𝑓𝑖𝑒𝑙𝑑, respectively. Then it can 
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be shown that the Hull-White Model implies a normally 

distributed short-rate process with 
 

𝐸 𝑟 𝑡  𝐹𝑠 = 𝑟 𝑠 𝑒−𝑎 𝑡−𝑠 + 𝛼 𝑡 − 𝛼 𝑠 𝑒−𝑎 𝑡−𝑠 , 
 

where 
 

𝛼 𝑡 = 𝑓𝑀 0, 𝑇 +
𝜎2

2𝑎2
[1 − 𝑒−2𝑎 𝑡−𝑠 ]2, 

and 
 

𝑉𝑎𝑟 𝑟 𝑡  𝐹𝑠 =
𝜎2

2𝑎
 1 − 𝑒−2𝑎 𝑡−𝑠  . 

 

The Hull-White Model also gives closed formulas for the 

price of a zero-coupon bond issued at time $t$ maturing at 

time 𝑇, 𝑃(𝑡, 𝑇). The price is given by 
 

𝑃 𝑡, 𝑇 = 𝐴 𝑡, 𝑇 𝑒−𝐵 𝑡,𝑇 𝑟(𝑡), 
 

with 
 

𝐴 𝑡, 𝑇 =
𝑃𝑀  0,𝑇 

𝑃𝑀  0,𝑡 
𝑒(𝐵 𝑡,𝑇 𝑓𝑀  0,𝑡 −

𝜎2

4𝑎
 1−𝑒−2𝑎𝑡  𝐵 𝑡,𝑇 2)

, 

 

and 
 

𝐵 𝑡, 𝑇 =
1

𝑎
(1 − 𝑒−𝑎 𝑇−𝑡 . 

 

IV. HIDDEN MARKOV MODEL AND HULL-WHITE 

ONE-FACTOR MODEL FOR THE INTEREST RATE 

Because the In this section we explain how to use 

Hull-White one factor model and Hidden Markov Model to 

simulate the interest rate. We first present the methodology, 

followed by the data preparation and numerical results. 

A. A. Methodology 

Consider the time interval 𝑡0 ,𝑡1, . . , 𝑡𝑁  with equal width 

Δ𝑡 =
1

𝑁
. The short interest rate series 𝑟𝑡0

, 𝑟𝑡1
, . . , 𝑟𝑡𝑁  can be 

simulated recursively by using the Hull-White one factor 

model in equation (1) with an initial interest rate 𝑟0: 
 

𝑟𝑡𝑖 = 𝜃 𝑡𝑖−1 Δ𝑡 + (1 − aΔt)rti−1
+ σ ΔtZti

,          (2) 
 

where the deterministic function 𝜃(𝑡) is chosen as 
 

𝜃 𝑡 =
𝜕

𝜕𝑡
𝑓 0, 𝑡 + 𝑎𝑓 0, 𝑡 +

𝜎2

2𝑎
 1 − 𝑒−2𝑎𝑡  .         (3) 

 

Hull and White [3] showed that we can eliminate the term 
𝜎2

2𝑎
 1 − 𝑒−2𝑎𝑡   in Equation (3) since its value is fairly small. 

Therefore we just use 

 

𝜃 𝑡 =
𝜕

𝜕𝑡
𝑓 0, 𝑡 + 𝑎𝑓 0, 𝑡 .                        (4) 

 

 In the Hull-White model, the market instantaneous 

forward function 𝑓(0, 𝑡) , the forward rate at time 0 for 

maturity 𝑡 , was assumed to be a third degree polynomial 

function of time  𝑡 of the form 

  

𝑓 0, 𝑡 = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡
2 + 𝑏3𝑡

3.                  (5) 
 

In the HMM-HW model, we add a state variable for the 

interest rate, denoted 𝜆 , into the instantaneous forward 

function defined as a dummy variable. Thus the forward 

function has the form 
   

𝑓 0, 𝑡 = 𝑐𝜆 + 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡
2 + 𝑏3𝑡

3.             (6) 
   

  First, we use HMM to find the states of the interest rate, 

the dummy variable 𝜆 of the forward rate function, then we 

use the polynomial regression model to find coefficients of 

the forward function in Equation (6). Using equations (4) and 

(7) gives 
     

𝑟𝑡𝑖 − 𝑟𝑡𝑖−1
=

𝜕

𝜕𝑡
𝑓 0, 𝑡𝑖−1 𝛥𝑡 + 𝑎 𝑓 0, 𝑡𝑖−1 − 𝑟𝑡𝑖−1

 𝛥𝑡 +

𝜎 𝛥𝑡  𝛧𝑡𝑖
.                                        (7) 

 

Thus 
 

𝜎 𝛥𝑡  𝛧𝑡𝑖
= 𝑟𝑡𝑖 − 𝑟𝑡𝑖−1

−
𝜕

𝜕𝑡
𝑓 0, 𝑡𝑖−1 𝛥𝑡 + 𝑎 𝑓 0, 𝑡𝑖−1 −

𝑟𝑡𝑖−1𝛥𝑡.                                (8) 
  

We then find 𝑎 as a minimizer of function 
 

𝐻𝑊 𝑎 =  (𝑟𝑡𝑖 − 𝑟𝑡𝑖−1
−

𝜕

𝜕𝑡
𝑓 0, 𝑡𝑖−1 𝛥𝑡 +𝑁

𝑖=1

𝑎𝑓0,𝑡𝑖−1−𝑟𝑡𝑖−1𝛥𝑡)2.                                (9) 
 

The last parameter that we need to calibrate is 𝜎. To find 𝜎, 

we first predict the interest rate 𝑟  using the formula 
 

𝑟 𝑖 = (
𝜕

𝜕𝑡
 𝑓 0, 𝑡𝑖−1 + 𝑎𝑓(0, 𝑡𝑖))𝛥𝑡 +  1 − 𝑎𝛥𝑡 𝑟𝑡𝑖−1

,   (10) 
 

for 𝑖 = 1,2, . . , 𝑁, and 𝑟 𝑡0
= 𝑟𝑡0

. Then 

  𝜎 =
𝑠

 Δ𝑡
,                                     (11) 

where 𝑠  is the standard deviation of the error series 𝑟 𝑡𝑖 −

𝑟𝑡𝑖 . , 𝑖 = 1, . . , 𝑁. 

After calibrating all the needed parameters, we then 

simulate the interest rate using Equation~(\ref{Rate}). Data 

and results of the simulations will be presented in the next 

section. 

B. Implementation and Results 

We use daily data on the one-year interest rate in this study. 

The economic crisis in 2008 had huge effects on many 

economic indicators, including the interest rate. Therefore we 

want to use HMM to detect the crisis time and find regimes of 

the interest rate. We use HMM with two regimes, which 

represent the two main economic conditions: growth and 

recession. We assume that the observed probability 

distributions corresponding to these two regimes are 

Gaussian in nature. Daily data of the one-year interest rate 

from December 31, 2004, to January 1, 2010, is used to 

calibrate parameters and find the data's regimes, using 

Baum-Welch and Viterbi algorithms. First, we use the 

Baum-Welch algorithm to calibrate the model parameters 

},,,{ pA ii   , 𝑖 = 1,2. Then we calculate the ratio of the 

means and variances of the two normal distributions, 
𝜇 𝑖

𝜎𝑖
, and 

define regime one as the regime of the normal distribution 

with a higher ratio. 

The trained transition probability matrix is 

 

A= 
1.0000 0.0000
0.0013 0.9987
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The initial probability of being in regime one or two at 

time 0 is 𝑝 = (0,1). 

The parameters of the two normal distributions 

corresponding to the two regimes are: 𝜇1 = 4.34, 𝜎1 = 0.73, 

and 𝜇2 = 0.84,  𝜎2 = 0.0.72. The regimes of the short term 

interest rate from December 31, 2004, to January 1, 2010 are 

presented in Fig. 1. The result shows that the interest rate in 

the period had two regime periods: Regime One from 

December 31, 2004, to December 31, 2007, and Regime Two 

from January 1, 2008, to January 1, 2010. We pick a period of 

ten months before the regime change on December 31, 2007 

and ten months after the regime change to make a pool of data 

for the interest rate simulations. We choose to expand the 

data to ten months before and after the regime change date 

because we want a pool of data that has only two time periods 

consisting of the first regime and the second regime. The 

transition date between these two regimes is December 31, 

2007. The number of points in the data pool is the number of 

business days during the period, which is 450 days. Each year 

has 252 working days. 

 

 
Fig. 1. Predicted regimes of one-year interest rate using HMM. 

 

Therefore, we choose randomly one time series of 252 

consecutive points from the pool of data to train parameters 

for the Hull-White model and use the trained parameters to 

simulate the interest rate. Thus, the time step in the HW 

model is Δ𝑡 =
1

252
. Since we used HMM to find regimes of 

the data pool, for any random one-year-period series in the 

data pool, we already know its regimes which were switched 

on December 31, 2007. We follow the methodology 

presented in the previous section to simulate the one-year 

interest rate using a random daily time series from the pool 

starting on  October 30, 2007 to October 28, 2008. The 

regime switch date corresponds to the time variable 

t=42/252. 

First, based on its regimes, found by using HMM, we 

determine the values of a regime (or dummy) variable 𝜆𝑡  in 

Equation (6). Here 

𝜆𝑡 =  
1 𝑖𝑓 0 ≤ 𝑡 ≤

42

252
 

0 𝑖𝑓 
42

252
< 𝑡 ≤ 1

  

 

We then use polynomial regression to determine the 

instantaneous forward rate function represented by Equation 

(6): 

𝑓 0, 𝑡 = -0.8925𝜆𝑡 + 4.0214 − 9.1573𝑡 + 20.6133𝑡2 −

13.3839 𝑡3. 

Thus, the derivative of 𝑓(0, 𝑡) with respect to 𝑡 is: 
 

𝑓 0, 𝑡 = −9.1573 + 41.2266𝑡 − 40.1517𝑡². 
 

We substitute these functions into the function 𝐻𝑊(𝑎) in 

Equation (9) and use least squares regression to optimize the 

function and find its minimizer 𝑎.  Then we predict the 

sequence 𝑟  using Equation (10) and calibrate the parameter 𝜎 

using Equation (11). Finally, we compute the function 𝜃(𝑡) 

using Equation (4). 

We have the parameters 𝑎=27.5136, 𝜎=1.4797$, and 

𝜃 𝑡 = −9.1573 + 41.2266𝑡 − 40.1517𝑡2 +
27.5136(−0.8925𝜆𝑡 + 4.0214 − 9.1573𝑡 + 20.6133𝑡2 −
13.3839𝑡3).  

After determining all of HW's parameters (𝑎, 𝜎, 𝜃), we use 

the parameters to simulate the interest rate for the same 

period using Equation (7). The results of the simulation are 

presented in Fig. 2. In Fig. 2, we plot the three series: real 

interest rate, the simulated interest rate using the original HW 

model, and the simulated interest rate using HMM-HW 

model. 

 
Fig. 2. Simulated interest rate using HW and HMM-HW models. 

We compute errors of simulations using the absolute 

percentage error (APE), the average absolute error (AAE), 

the average relative percentage error (ARPE) and the 

root-mean-square error (RMSE). These error estimators are 

calculated using the formulas 

𝐴𝑃𝐸 =
1

𝑟 
 

|𝑟𝑖−𝑟 𝑖|

𝑁

𝑁
𝑖=1                             (12) 

 

𝐴𝐴𝐸 =  
|𝑟𝑖−𝑟 𝑖|

𝑁

𝑁
𝑖=1                               (13) 

 

𝐴𝑅𝑃𝐸 =
1

𝑁
 

|𝑟𝑖−𝑟 𝑖 |

𝑁

𝑁
𝑖=1                                (14) 

 

𝑅𝑀𝑆𝐸 =  
1

𝑁
 

|𝑟𝑖−𝑟 𝑖|

𝑁

𝑁
𝑖=1                              (15) 

    

where 𝑁  is a number of simulated points, 𝑟𝑖  is the real 

interest rate, 𝑟 𝑖  is the simulated rate, and 𝑟 𝑖  is the mean of the 

sample. The errors are listed in Table I. The results in Table I 

show that the HMM-HW reduces errors of the interest 

simulations by about 50 %. 

We repeat the process for 1500 random series in the pool 

and plot the histogram of the errors, calculated by formulas 

(12)-(15), in Figs. 3-6, respectively. The results show that the 

HMM-HW model reduces not only the mean of the errors but 

also their variance. We see from the figures that the 

histogram of HMM-HW's errors is shifted to the left 

compared with the histogram of HW's errors. Furthermore, 

the distributions of errors of these two methods for the 

interest rate have positive skewness and their kurtosis is far 

from the kurtosis of the normal distribution. 

We also test the efficiency of adding the regime (dummy) 

variable to HW by calculating the adjusted 𝑅2 of regressions 

and plot the results in Fig. 7. 

 In Fig. 7, the horizontal axis is the end date of each series 

of these 1500 simulations, and the vertical axis is the adjusted 

𝑅². The adjusted 𝑅² was calculated by using the formula 

𝑅𝑎𝑑𝑗 = 1 −
 1 − 𝑅2 (𝑁 − 1)

𝑁 − 𝑘 − 1
, 
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where 𝑁 is sample size and 𝑘 is the number of variables in 

the model, excluding the constant. If a useless variable is 

added to a regression model, the adjusted 𝑅2 will decrease. In 

contrast, if we add a useful variable to the model, the adjusted  

𝑅2  will increase.The results show that the regime variable is a 

significant variable in the forward function. The adjusted 

𝑅2  increased when we added the dummy variable to the 

model. 
 

TABLE I. ERRORS OF SIMULATING INTEREST RATE USING HW AND 

HMM-HW MODELS 

Models AAE RMSE ARPE APE 

HW 0.4617  0.5899 0,0018  0,2034 

HMM-HW 0.2150 0.2778 0.0009 0.0947 

 

 
Fig. 3. APE errors of interest rate simulations using HW and HMM-HW 

models. 

 

 
Fig. 4. AAE errors of interest rate simulations using HW and HMM-HW 

models. 

 

 
Fig. 5. ARPE errors of interest rate simulations using HW and HMM-HW 

models. 
 

 
Fig. 6. RMSE errors of interest rate simulations using HW and HMM-HW 

models. 

 
Fig. 7. Adjusted 𝑅2  of regression of forward function in HW and HMM-HW 

models. 

 

V. CONCLUSION 

The Hull-White one-factor model is a classical model for 

the short-term interest rate. The forward rate function in the 

HW model is assumed to be a function of time 𝑡. However, 

we found jumps in the time series of U.S. real interest rates as 

a result of important macroeconomic changes, most recently 

during the 2008 economic crisis. Therefore, we investigated 

the effects of the jumps on short term interest rate modeling. 

In this study, we added a regime variable to the forward 

rate function to make it more adapt to the regime switch of 

the interest rate. The regimes were identified by the two-state 

(or two-regime) HMM. Adding the dummy regime variable 

to the forward function is a simple relaxation of the 

Hull-White model. The modification made a significant 

improvement to the HW model. The error of the interest rate 

estimations using HMM and HW (HMM-HW) model was 

reduced by half compared with the original HW model. 

Furthermore, the results of the short term interest rate 

simulations showed that the HMM-HW's histogram errors 

were shifted to the left and shrunk horizontally by half of the 

size of the HW's histogram errors. Hence using the 

HMM-HW model for simulating short the term interest rates 

reduced not only the mean but also the variance of errors. 

Additionally, the adjusted 𝑅2 of the regression model for the 

forward rate function was increased when we added the 

regime variable. All of these results indicate that the regime 

variable has a significant influence in modeling the interest 

rate. This important improvement of the short-term interest 

rate model has a substantial impact on the pricing of annuity 

contracts, investment outcomes and decisions, and in other 

relevant models in actuarial science and financial 

mathematics. 
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