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Abstract—This paper deals with recognizing the Market risk 

of an asset or portfolio of assets through the Beta Coefficient in 

Capital Asset Pricing Model. There is wide range of methods 

based on time series. One of them is Kalman filter. Kalman 

filter belongs to the special methodology based on correction of 

previous results via new observations. Kalman filter can 

optimally forecast the dynamic beta to measurement covariance. 

The aim of this paper is to show how to measure the volatility, 

or systematic risk, of a security or a portfolio with the Kalman 

filter. Kalman filter method, unlike the other estimators, 

imposes assumptions about the specifics functional form of beta 

dynamics. 

 
Index Terms—CAPM, Beta coefficient, Kalman filter.  

 

I. INTRODUCTION 

Capital asset pricing model (CAPM) independently 

developed in 1964 by Sharpe, Lintner in 1965 and in 1966 

Mossin. CAPM, the above theory of optimal portfolio. Model 

deals with the relationship between the average return on 

assets and return dispersion conditions for market 

equilibrium, when all investors elect optimal portfolio [1]. 

The starting model is the beta factor, which compares the 

rate of return of previous investments and rate of return of the 

market portfolio from a larger data set. Critics argue that the 

model is not testable because it is based on expected returns 

and the unrealistic assumptions such as: 

1) Not all investors have equal access to information and 

equal costs of capital 

2) Does not take into account taxes and transaction costs, 

3) Does not take sufficiently into account the risk of 

illiquidity of the issuer [2].  

Because of this criticism was itself modified model and its 

improvement and took place at the practice-stigmas. Created 

models such as: 

1) T-CAPM model - in 1970 to create MJ Brennan and 

including in it the existence of taxes on capital gains and 

dividends, while pointing out the difference between the 

tax rates of income (dividends) and capital gains; 

2) Zero-Beta CAPM model - which stands for the model of 

capital assets with zero beta factor, its author is F. Black, 

who claims that all available free-risk assets may not in 

practice always filled; 

3) Consumer CAPM model - assumes that investors try to 

maximize their lifetime utility from consumption, its 

author D. Breedenem created a beta factor, which shows 
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the sensitivity of the instrument to change consumption 

investor.  

4) IP-CAPM model - one of the factors that Sharpe original 

model was not taken into account liquidity, which 

significantly affects the rate of return and CE-nu 

instrumental, IP-CAPM model is a modification that 

works with liquidity as a separate factor [3]. 

The starting point of the CAPM, the distribution of the 

overall risk: 

1) Unique risk - arises from the Issuer investment 

instruments and may be at an appropriate asset allocation 

very efficient diversified, so sometimes called 

diversified risk 

2) Systematic risk - issuers of investment instruments 

cannot control it, because it results from the overall 

economic development of the individual and of 

macroenomic factors, also known as non-diversification 

if an investor invests only in domestic investment 

instruments [4]. 

 

II. BETA COEFFICIENT 

As we mentioned above, the content of the CAPM is the 

systematic (market) risk, which we calculated using the 

so-called beta coefficient. From a mathematical point of view 

is the beta coefficient slope of a line that we can calculate 

methods at least-as-Squares: 

𝛽𝑖 =
𝑛  𝑉𝑖𝑉𝑡− 𝑉𝑖  𝑉𝑡

𝑛  (𝑉𝑡)
2−( 𝑉𝑡)

2                          (1) 

Beta coefficient is a standardized rate of risk assets 

reflected to the risk of the market, i.e. the level of systematic 

risk. It represents a rate of risk of securities in financial 

practice. If we modify the basic form of the CAPM: 

( ), 1,2,....,i f i M fr r r r i n                      (2) 

Then we see that a unit change of the average rate of 

market portfolio return leads to a greater change of the 

average potential return of security. It is evident that the 

greater the coefficient βi of the security, the more volatile the 

asset, i.e. unstable. Risk factor βi therefore expresses the 

sensitivity of return of analysed financial asset to the market 

index change.
1
 In general, there are five options that can 

happen when analysing securities and they are described in 

the following table and graphically expressed in the following 

figure. 

We distinguish two forms of beta coefficient: 

1) ex post – beta determined by past, historical data, 

2) ex ante – the estimation of beta coefficient to the future, 

i.e. expected beta [5]. 

 
1 Size of the beta coefficient also depends on the type of company whose 

securities are traded, for example energetics usually has β <1 and in 

insurance β > 1. 
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TABLE I: BETA COEFFICIENT AS A DETERMINANT OF RELATION BETWEEN 

THE RETURN OF SECURITY AND MARKET 

BETA  value Development of individual security return 

β < 0 
Return of security moves inversely to market return 

(determined by market index) 

β = 0 Risk-free security 

0 < β < 1 
Return of security moves the same direction as market 
return but slowlier. It is so called defensive security. 

β = 1 
Neutral security and its profitability changes as the 

market do, i.e. security has an average systematic risk. 

β > 1 

Return of security moves the same direction as market 
return but faster. It is so called offensive or aggressive 

security. 

 
Fig. 1. Five options of Beta Coefficient development. 

 

III. KALMAN FILTER 

Literature shows that there have been quite a number of 

techniques for beta estimation. For example OLS – Ordinary 

Least squares, GLS – Generalized least squares, KF – 

Kalman Filter, Adaptive KF.  

The Kalman filter is over 50 years old but is one of the 

most important and use today. The Kalman filter framework 

was originally developed by Rudolf E. Kalman (1960) and 

became a part of the astronautically guidance system of the 

Apollo project. However, it has also been used for 

applications in other scientific fields. 

Recently (and this is what we will be discussing), the 

Kalman filter approach has been discovered as an estimation 

tool in continuous time finance - only in the last decade, 

marked by Harvey (1989), Kalman filters have become 

important econometric tools for financial and economic 

estimation problems [6]. 

Using the past development of inputs and outputs, Kalman 

filter can estimate the states (unobserved variables) at each 

time point. Its algorithm consists of two steps: prediction and 

filtration. The steps are repeated, which means that firstly we 

do optimal state prediction one step forward using actually 

observed inputs and outputs and then the in next moment is 

this prediction corrected on the basis of newly observed 

information about measured inputs and outputs. The 

procedure is repeated for each time point t, where t = 1, 2, ..T. 

Firstly, the following must be said: the Kalman filter is 

simply an optimal recursive data processing algorithm. [7]. 

 To the word optimal: Because there are many ways to 

define “optimal”, a criterion of that optimality has to be 

chosen. It can be shown that, under the speci_c 

assumption, the Kalman filter is optimal with respect to 

virtually any criterion that makes sense. One aspect of 

that optimality is that the algorithm incorporates all 

information it can be provided with. It processes all 

measurements to estimate the current value of the 

variables of the interest, with use of [8]: 

1) knowledge of the system and measurement device 

dynamics, 

2) the statistical description of the system noises, 

measurement errors, uncertainty in the dynamics models, 

and 

3) any available information about initial conditions of the 

variables of interest. 

 To the word recursive: unlike certain data processing 

concepts, the Kalman filter does not require all previous 

data to be kept in storage and reprocessed every time a 

new measurement is taken. This is very useful for the 

filter's practical implementation. [9]. 

Figure 2 depicts a typical situation in which the Kalman 

filter could be used: a system is driven by known controls and 

measuring devices provide the value of certain pertinent 

quantities. Knowledge of these system inputs and outputs is 

all that is explicitly available from the physical system for 

estimation purposes. [10]. 
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Fig. 2. Typical Kalman filter application. 

 

The word “need” for a filter will be now explained: often 

the variables of interest, some finite number of parameters to 

describe the state of the system, cannot be measured directly - 

some values from the available data must be generated. 

The Kalman filter is based on the so-called endless cycle. 

Based on the known initial value, the future state is firstly 

estimated and after gaining new and actual information is the 

prediction corrected to estimate the future state as accurate as 

possible. After getting newer data is the prediction modified 

again and again and the cycle is repeated continuously. The 

advantage of Kalman filter is that it is not necessary to 

remember all the previous values. We use the equation (2), 

but we must modify it: 
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 i f i i M f ir r r r                         (3) 

where:  

 αi - measure of an incorrect valuation of securities 

 εi - random, residual fault.  

The CAPM assumes the balance on the security market, 

which is obviously a simplification of reality [11].In the real 

world security returns are determined by situation in the 

financial markets.
2
 As we use the real world data and Kalman 

filter we are able to detect where the αi differs more or less 

from zero, and it can help us to identify the reasons of this 

market development. The same principle is used for 

coefficient βi volatility, which is influenced not only by the 

marke development (exogenous factors) but also by the 

development of the company which issued securities 

(endogenous factors). Equation (3) is modified to so-called 

measurement equation that describes the relation between 

state and measured values: 

t f t t tR R X B                        (4) 

where: 

 Rt  -  security return, 

 Xt  -  vector, if Xt=(1, RM-Rf), 

 Rf  - risk-free return rate, 

 Bt -  vector, if Bt=(αt, βt)
T
  , 

 εt   -  vector of random faults, if  t ~ N(0,σ
2
). 

 

Next, we will need so called transition equation or 

transitive equation, which describes the transition from the 

state Bt-1 to the state Bt: 

1t t tB B            (5) 

where: 

Bt  - state vector with information about system in time t, 

ф  - transitive matrix with fixed coefficients with (2×2) 

dimension which explains the transition from   t-1time to the 

state in time t, 

ωt - independent random faults, if ωt ~ N(0,σ
2
Ω) , 

Ω - final symmetric matrix with (2×2) dimension. 

For the mean values of εt and ωt must apply: 

  
 , 0

, 1,...,

T

t sE

s t T

  

 
                     (6) 

If we note the estimate of vector B at the time t  with the 

condition that the relevant information is available at the time 

1t as
1

ˆ
tt

B  it is possible to quantify the error (e - error) of 

this estimate
e

tt
B

1
 as the difference between actual vector  

tB and estimated vector 
tt

B̂ : 

1
ˆe

tt t t t
B B B


                                (7) 

Then the variance of this miscalculation: 

1 1 1
{ }e e T

t t t t t t
E B B P

  
                      (8) 

When formulating Kalman filter we assume that so called 

 
2  Financial markets reflect the situation in countries, for instance 

economic and financial crisis, terrorism, war, crop failure, booms, etc.. 

hyper parameters of the model
3
 (i.e. variance

2 , covariance 

matrix 2 and transition matrix ) are known. Next, we 

define the following linear relation, by which we estimate the 

tt
B̂ vector based on knowledge of 

1
ˆ

tt
B estimation, 

innovation tz and matrix tK : 

1
ˆ ˆ

t tt t t t
B B K z


                           (9) 

where: 

Kt  - matrix of Kalman gain. 

Innovation zt (innovation) defines the difference between 

estimated and real state: 

1
ˆ( )t t t t t

z R X B


                          (10) 

where: 

zt  - innovations, which are mutually independent and if zt ~ 

N(0,σ
2
ft) , 

If 0tz , i.e. 
1

ˆ



tttt BXR , then the estimation of 

tt
B̂  state equals to

1
ˆ

tt
B prediction. 

To minimize the variance
tt

P  we use the matrix tK , 

which we call Kalman gain. Kalman gain defines how greatly 

is the state 
tt

B̂ influenced by 

improvement and it has the following form: 

  1t tt t t t
P I K X P


                          (12) 

where: 

I  - unit matrix, 

If 1

0
lim 


 XK t

t

 then the greater credibility is given to 

actual measures than to values obtained by predictions. 

Otherwise, if 0lim
01




t
P

K
tt

 then the greater credibility is 

given to predictions. By tK matrix is also determined 

estimation of 
tt

B̂ state and of variance
tt

P . 

The algorithm for calculating the beta coefficient using 

Kalman filter is shown in Fig. 3. If we know4 the state 0B
 

and its variance 0P
, then we estimate the state 

10
B̂  and its 

variance
10

P . After gaining new data 1X  Kalman gain 1K  

is calculated and the estimation of the 
11

B̂  state and its 

variance 
11

P  are modified. Then the whole process is 

repeated, i.e. we again estimate the state 
21

B̂   and its 

 
3 Hyper parameters of the model are not known in advance and they must 

be estimated. This estimation may be done by the function of maximal 

credibility. 

4 If we do not know 0B  and 0P , which happens quite frequently, then 

they must be estimated on the basis of the first k observations by the LSM 

method. 

12 1

1 1 2

1

( )

T

tt tT T

t t t tt t t t T

t tt t

P X
K P X X P X

X P X






 



   
 
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variance 
21

P and after gaining the new data Kalman gain 2K

is calculated, etc. [12].  

 

 
Fig. 3. Algorithm of Kalman filter. 

 

IV. CONCLUSION 

This paper characterizes the Kalman filter for beta 

estimation. We can conclude that the Kalman filter is the 

optimal filter for a linear model subject and it can be derive 

by using conditional expectation. This filter is known to be 

able to support estimations for past, present, and also future 

states even when the precise nature of the modelled system is 

unknown. Its great advantage is based on the direct operating, 

i.e. to calculate the best estimate only if past estimation and 

new measurements are used and previous measurements are 

not important. Kalman filter can be applied to obtain 

so-called smoothed values 
tt

B̂ . These state estimates based 

on all available data in the sample are firstly gained by the 

Kalman filter and by re-recursion beginning with the last 

filtered state
1

ˆ
t t

B

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