
  

 

Abstract—In this paper, a pricing model is proposed for co-

integrated commodities extending Larsson model. The futures 

formulae have been derived considering a linear combination 

of a Brownian motion and an Ornstein-Uhlenbeck process 

describing the co-integration relationship of the different 

futures prices commodities. Tests have been performed with a 

non-constant volatility in order to fit better the real behavior of 

the volatility. The model has been applied to energy 

commodities (gas, CO2, energy) and soft commodities (corn, 

wheat). Results show that first, the model can be used with 

different kind of commodities at the cost of a proper 

parameters calibration and in second, using a non-constant 

volatility leads to more accurate short term prices, which 

provides better evaluation of Value-at-Risk and more generally 

improves the risk management. 

 

Index Terms—Co-integration, risk management, soft 

commodities, value-at-risk. 

 

I. INTRODUCTION 

In the trading of raw materials, an asset value is often 

strongly linked to another one. For example, electricity price 

depends on the coal used to produce it.  

The study of dependences and relations between various 

raw materials is therefore essential, and co-integration is 

nowadays a common tool for investigating dependences in 

multivariate time series [1]. This corresponds to existence of 

a relationship between the prices which makes a linear 

combination of them stationary, even though individually 

they are non-stationary. 

In Ref. [2], multiple energy spot prices such as gas and 

power between different markets are considered. A co-

integrating multi-market model framework is developed by 

connecting different single-market spot-price models and it 

is shown that gas prices are strongly co-integrated with 

power prices for a specific market. The different 

commodities must therefore be taken in the same market. 

In Ref. [3] the evolution of electricity and gas prices from 

the UK market is modeled and option price on the spark 

spread is simulated. Despite using co-integration technique, 

the series are considered as normal inverse Gaussian 

processes and copula are calculated which can strongly 

influence the option prices. The considered energy 

commodities as well as a different method for linking both 

of them are interesting for comparing the model with a co-
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integration model.  

In Ref. [4] the price relationship of primary agricultural 

commodities, exchange rates and oil prices are examined, as 

nowadays many agricultural commodities can be used to 

produce energy. Analysis of co-integration vector of the 

different prices over time showed that commodity prices are 

linked to oil for corn, cotton and soybeans. In the model, the 

question of seasonality effect is raised, which can be 

interesting to consider. 

In Ref. [5] a continuous-time co-integrated asset 

dynamics using spot prices of crude oil and gasoline is 

proposed. Results showed that both commodities are co-

integrated and an interesting calibration method for 

commodity markets is given. However, most results focus 

on spot price modeling and then deduce the future prices 

endogenously. 

Present work is based on [2], where it is shown that 

ignoring co-integration and using simple correlation based 

price models heavily overestimates the spread variation over 

long time horizons. This can lead to drastically overestimate 

Value-at-Risk and excessive capital requirements. Here to 

analyze this point, two main objectives are looked for: first 

one is to check improvement nature in Larsson-Nossman 

model [6] by when specifying non-constant volatility into 

the parameters. The second one is to apply this model to soft 

commodities in order to show that the model is generic [7]. 

Soft commodities can be defined as commodities which can 

be grown such as coffee, cocoa, sugar, corn, wheat, soy bean 

and fruits [8]. Adding a non-constant volatility makes the 

model more realistic, and a reduction in price oscillations 

can be observed. Reducing uncertainty in this type of model 

is very important for many market actors. Indeed, a 

significant decrease on price variation is observed during the 

first hundred days. Present analysis is meant for pricing of 

raw materials, and many producers and consumers are 

sensitive to such variations. They can partly be explained by 

factors like seasonality, as soft commodities require time to 

be produced and as most of the time, prices are negotiated 

before the hopping (forward contracts).The inherent gap 

between supply and demand causes a constraint on the 

short-term supply and instabilities on agricultural markets. 

In a same way, markets can be affected by factors such as 

weather conditions and diseases affecting crops. All these 

elements contribute to the complexity of soft commodities 

market, and justify why modeling such market represent a 

big challenge with large economic impact. 

 

II. MODEL 

In this section, the main equations for calculating a 

commodity future price are stated. From [6], the futures 
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prices of N commodities at time t with delivery time T, are 

given by (t; T)(:) = exp[F(t; T)(:)] with 

col[12N], F=col[F1, F2, ... FN]. The log futures 

prices F(t, T) obey the equations :  

 

dF(t; T)=Z(t)dt + (t; T).dW(t)                  (1) 

 

with col = diag[] and 

W=col[W1, W2, ...WN], and where Z(t)=

.F(t, T) with 

=col[From (1) and using Itoh formula one 

gets 

 

d[Z(t)exp(Bt)]=

(t; T).exp(Bt)dW(t)         (2) 

 

where B=

 and integration of (2) gives 



exp(Bt)+                        
 

 
   (3) 

 

Reporting in (1) one finally obtains its solution in the 

form  

 

F(t, T) = F(0, T) + Z(0)E(t) +{                
 

 

 )  ( )} + 0  ( ;T)  ( )                 (4) 

 

with the function E(B, u) = B
1

[expBu1].  

To completely determine forward price vector F(t, T) time 

dependence of volatilities has to be fixed. On simple 

grounds volatility is expected to be small at the beginning 

and to increase with time with highest value at maturity. 

This is relevant because volatility can be understood as 

uncertainty, and making projections on a long period of time 

is more subject to uncertainty than on a short one. Here one 

will take for each diagonal element the semi-empirical form  

 

k(u; T) = kexp[k(T  u)]                       (5) 

 

The exponential part reduces volatility when the time is 

small whereas it tends to 1 when the time gets close to 

maturity. Aside ease in integral computation, exponential 

dependence in (5) is reminiscent of previous results in LQR 

optimal control [9], where transpose system with opposite 

sign eigenvalues is associated to actual system for guiding 

system trajectory toward the prescribed target. It is also in 

agreement with fading away decay of fluctuating functions 

when averaged. With this dependence, forward price is 

given by 

 

F(t, T) = F(0, T) + Z(0)E(B, t) +                    (4) 

B
1{   (0, T).[YexpBt(BX+Y)]}+  (0, T) .Y 

 

where N-vectors X and Y are containing all randomness (i.e. 

the risk) associated respectively with the commodities and 

co-integration dynamics in the form 

 

Y(t) =       
 

 
   dW(u) ;                       (5) 

X(t) =       
 

 
   E(B, u)dW(u)    

 

Introducing component wise standard deviation vX and vY 

of X and Y, the following normalized variables    and    will 

be introduced by X=vX   and Y=vY   so that    ~ N(0, 1),    ~ 

N(0, 1). As these processes are not independent, they can be 

represented in the form 

 

   = col[  ,   ] =  H(t).E(t,.)                        (6) 

 

where E(t,.) = col[is a N-vector of 

independent random variables with a distribution N(0, 1) 

and H(t) = Tab[i,j(t)] a lower triangular matrix with i,j(t) = 

0 for j >i, and normalization j(i,j)
2
 = 1,the coefficients of 

which are determined by calculation of covariance between 

the various components of   . First one gets from (5) 

 

Cov[Yi, Yj] = ijE(i+j, t);  

Cov[Yi, Xj] = B
ij[E(i+j+ B, t)(i+j, t);         (7) 

Cov[Xi, Xj] = B
ij[E(i+j+ 2B,t)(i+j+ B, t) 

+ E(i+j, t) 

 

and standard deviation (vXi)
2
=Cov[Xi, Xi], (vYi)

2
=Cov[Yi,Yi] 

with ij=<dWidWj> the elements of correlation matrix 

between random fluctuations acting on system (1). Using (6, 

7) and definition of   ,    one similarly obtains 
 

Cov[  i,   j] = k≤min(i, j)[i,kj, k] = (vZivZj)


Cov[Zi, Zj]  (8) 

 

from which all coefficients j, k(t) can be easily evaluated.   

From these coefficients, it is possible to simulate the 

considered processes and therefore to make a pricing. With 

the prices, the important Value-at-Risk (VaR) in risk 

management can be derived. The VaR is the maximal loss 

that a financial product holder can make. The product can be 

equities or derivatives. Mathematically, the VaR is the 

maximal loss value with in general a 95% confidence 

probability. The VaR computation determines the amount to 

save in order to hedge the market risk (to make the risk 

neutral). The smaller is the VaR, the less assets the company 

has to save, allowing more opportunities for investments or 

savings. To calculate the VaR N simulations are performed 

with the model giving daily prices between the spot today 

and the maturity at last considered day. For each simulation, 

the difference between generated prices and spot prices is 

evaluated and the difference is stored in a matrix. At the end 

of the N simulations, the minimal value of all the differences 

is computed. These minima are stored as a vector sorted in 

ascent order, and starting from the last vector, the value 

corresponding to5% of the total number of vectors is 

selected. This value is the VaR. the precision of which is 

increased with N. 

 

III. SIMULATIONS 

In this section, simulations are performed with three 

commodities (energy, gaz and CO2) used in [10] in order to 

compare their results with the proposed time dependent 

specification of volatility. The motivation of a new volatility 

is simple. First considered Black-Scholes model is a 

mathematical model focused on derivatives giving 

theoretical price estimate of European-style options. 

Nowadays, despite its age and simplicity, this model still has 

an application, showing it may sometimes be more 
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interesting to work with model simplicity than trying to 

improve its complexity by adding non-constant or stochastic 

parameters. Present aim is to improve Larsson-Nossman 

model while preserving its simplicity. Therefore, constant 

volatility (a weak point in the model) has been modified into 

time dependent one in (5). 

Aside the fact that the chosen volatility depicts better 

markets behavior than a constant one, it does not add 

complication while providing better pricing results. Indeed, 

the volatility exponential part, depending on time and 

maturity, is easy to implement in the model and does not 

make the covariance computations harder. To be relevant, 

tests are made under the same conditions meaning that the 

same parameters are considered, and the spread of these 

commodities will be calculated with constant and non-

constant volatility. 

 

 
Fig. 1. Simulation of the spread prices of 3 commodities (gas, CO2, energy) 

using larsson-nossman model with constant volatility and same parameters. 
 

The curves in Fig. 1 oscillate strongly and quickly in 

time, while the amplitude of oscillations is smaller with non-

constant volatility. The oscillations start to increase around 

150 days whereas oscillations become large already around 

40 days with constant volatility, implying that short term 

expectations are more accurate with non-constant volatility. 

 

 
Fig. 2 . Simulation of the prices spread of 3 commodities (gas, CO2, energy) 

using larsson-nossman model with non constant volatility and same 

parameters. 

 

The VaR can be derived from simulated prices. In order 

to make comparisons with Larsson and Nossman tests, gas 

price VaR has been simulated. The VaR is calculated for 

different maturities with 3 months interval and has been 

plotted for the different maturities, with a maximal maturity 

of 36 months (3years). 

We have computed VaR of gas grice with Larsson-

Nossman model using the constant volatility and the non-

constant volatility. With the constant volatility, it can be 

observed that the larger is the maturity the bigger is the loss 

risk, with value 15 reached at maturity of 3 years. However 

with the non-constant volatility, the VaR is smaller for the 

same considered maturity with a maximal value reached for 

the maturity of 3 years and a loss of 5. It should be noted 

that both calculations are made with same parameters, 

except for the parameters which have been chosen in 

coherence with the model. As expected, using an 

exponential part in volatility makes the uncertainty smaller 

at short term periods. The Figures illustrate this 

phenomenon with better pricing results thanks to this new 

volatility. 

It is interesting at this point to test theoretical present 

model with real data market. Energetic data prices would be 

interesting as Larsson-Nossman model has been initially 

designed for this type of commodities, but the only available 

real data prices are concerning soft commodities from 

Euronext market: wheat and corn prices from 02/01/2013 to 

23/09/2013. On the other hand, it is largely expectable that 

there exist strong correlations between different segments in 

an integrated economy [11], so it is interesting to apply 

present theoretical study to such domains as well. As present 

study focuses on co-integrated commodities, it is first 

required to check this property for selected soft ones. For 

this purpose, augmented Dickey-Fuller (ADF) test [12]-[21] 

with the null hypothesis that the time series is integrated of 

order one, and Engle-Granger test [1] are both made in order 

to determine whether both commodities are co-integrated. 

Next step is to calibrate model parameters, ie to determine 

best values giving results closest as possible to real data 

prices. As  calibration process is fundamentally an 

optimization problem, the parameters are determined for 

each prices, meaning there are as many  parameter sets as 

there are input prices. Here as the model only requires one 

single set for simulating the results, average of all 

parameters is considered. 

 
TABLE I: OPTIMAL VALUES OF MODEL PARAMETERS, USING EURONEXT 

SOFT COMMODITIES 

Parameters Optimal value considering soft commodities sample 

K1 -0.0756 

K2 0 
Beta0 2.4144 

Beta1 0.8929 

Beta2 0.4390 
Lambda1 1 

Lambda2 1 

Rho -13.4710 
Rho12 0.6342 

Alpha1 5.0191 

Alpha2 3.0036 

 

On Fig. 3, it can be observed that simulated prices fit 

quite well to data market prices, strongly indicating that the 

model can be used for other commodities than energetic 

ones. However agricultural markets are particularly complex 

and their soft commodities are not always co-integrable such 

as energetic raw materials. This is why co-integration tests 

must be performed before using proposed theoretical model. 
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Fig. 3. Comparison between simulated and real data market prices for 

wheat. 

 

IV. CONCLUSION AND PERSPECTIVE 

In conclusion, considering a non-constant volatility 

definitely improves the results of Larsson-Nossman model 

because uncertainty relative to time affects the prices with a 

delay of 100 days approximately, making the evaluation 

over the 100 beginning days more accurate. Moreover, the 

less oscillating are the prices, the smaller is the VaR which 

is an important aspect in risk management. So the use of 

proposed non-constant volatility brings notable 

improvements, to the extent that parameters are correctly 

calibrated, especially the parameter  affecting volatility.  

While making the results better, a unique solution 

depending on entry data is proposed. Mathematical study 

shows that the generic model is analytically solvable and 

independent of parameter choice. Present model is not 

perfect however and can be made slightly better by taking 

both present non-constant volatility and soft commodities 

into account. Introducing parameter optimization could also 

be very interesting to improve model accuracy and produce 

smaller pricing difference with real market prices. This 

includes study of parameter sensitivity for making an 

analogy with the Greeks (delta, gamma, vega). 
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