
Abstract— This paper analyzes the predictivity and return
performance of the Barmish-Iwarere feedback trading algo-
rithm described in [1]. In the first part of the paper, we study
the trade triggering algorithm using either an Ito process model,
or real data from indexes and ETFs. It is shown through
hypothesis testing that the trigger provides mixed results in
predicting the sign of the single trade, for both the Ito process
and real indexes. However, we show empirically that the trigger
is sufficiently good in identifying a trend, while it fails in
detecting side movements. In the second part of the paper,
we analyze the effect of controller parameters under various
market circumstances. The efficiency of a pre-optimization on
historical data appears controversial. Some modifications are
experimented, with the objective of improving the returns.
In particular, the trigger is modified to detect anomalous
falls during a rising trend using the estimated volatility. The
resulting system is then tested with other indexes, commodities
and interest rates.

Index Terms— Trading system; trigger; feedback controller;
long-short trades.

I. INTRODUCTION
A mathematical model which is frequently used to approx-

imate the behavior of real markets is the Ito process [2], that
is a Brownian motion with drift. A Brownian motion (also
known as Wiener process) has three properties:
- is a Markov process: the probability distribution for all
future values of the process depends only on its current value;
- has independent increments: the probability distribution
for the change in the process over any time interval is
independent of any other (non overlapping) time interval;
- changes over any finite interval of time are normally
distributed.
An Ito process is described by the equation:

dS = a(S, t)dt+ b(S, t)dz (1)

where, dz is the increment of a Wiener process, a(S, t) is
the drift parameter, dz can be represented as dz = ϵt

√
dt,

where ϵt is a normal random variable with zero mean and
unit standard deviation. A special case of (1) is the geometric
Brownian motion with drift, here a(S, t) = µS, b(S, t) =
σS, where µ and σ are constant, and the equation becomes:

dS/S = µdt+ σϵt
√
dt (2)

so that the instantaneous rates of return dS/S are normally
distributed, as confirmed roughly by data analysis for real
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returns of stocks, and, for the Ito’s lemma, the increment
d(lnS) will be [2]: d(lnS) = (µ− 1

2σ
2)dt+ σϵt

√
dt.

Equation (2) is an approximated model which is often used
to simulate stock prices, being the differences with real data
usually negligible for high frequency data. Mean reversion
is one of the observed deviation from the model [3]: it is
the tendency of stock prices to be attracted towards their
long term mean; interest rates and raw commodities exhibit
a mean reverting behavior. The simplest model for a mean
reverting process is:

dS = η(S − S)dt+ σϵt
√
dt (3)

where η is the rate of reversion, and S is the level to which
S tends to revert. It should be noticed that this process
satisfies the Markov property, but does not have independent
increments.

Some studies have shown the tendency of stock prices to
overreact [3], investors are subject to waves of optimism and
pessimism that cause prices to deviate systematically from
their fundamental values and later to exhibit mean reversion,
in such cases the ”contrarian” strategy could be profitable,
this strategy has been used in the experiments.

II. THE TRADING SYSTEM

The trading system we analyze is composed by a trigger
and a controller [1], the trigger gives the signal for entering
or exiting a trade, the controller modulates the amount
invested with the objective of improving the return. The
system was tested at first with simulations of an Ito process.
The model used for generating the sequences is equation
(2), hence the price S(k + 1) is given by: S(k + 1) =
(1 + µ∆t+ σϵ(k)

√
∆t)S(k), where ∆t is the time interval

between potential trades measured in years, which is set
to a one day interval ∆t = 1/252, being a trading year
composed by around 252 days. µ is the annualized drift of
the stock, σ the annualized volatility of the stock, and ϵ(k) is
a normal random variable with zero mean and unit standard
deviation. An estimation µ̂ of µ and σ̂ of σ is computed from
n simulated or real market data, then σ̂ is used to build a
confidence interval for µ̂.

The one period return used to obtain the estimation is:
ρ(k) = S(k+1)/S(k)− 1. For real market data S(k) is the
closure price of the stock. Finally the estimates are:

µ̂(k) =
1

n∆t

n∑
i=1

ρ(k − i)

σ̂2(k) =
1

n− 1

n∑
i=1

(ρ(k − i)/∆t− µ̂)2,
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and a confidence interval on µ̂ is given by

[L(k), U(k)] = [µ̂(k)−
tα

2 ,n−1σ̂(k)√
(n)

, µ̂(k) +
tα

2 ,n−1σ̂(k)√
(n)

],

where 1 − α is the chosen confidence level, tα/2,n−1, the
critical value from the Student t-distribution with n − 1
degrees of freedom. With daily data there is no need to use
the exact formulas from the Black-Scholes model to compute
µ̂ and σ̂ [4]. Once the interval [L,U ] is computed, the rule
to trigger a trade is:

• if the lower extreme of the confidence interval L satis-
fies L ≥ 0, a long trade is triggered;

• if the upper upper extreme U satisfies U ≤ 0, a short
trade is triggered;

• for the case when L < 0 < U , no trade is triggered.
If the trigger returns a signal of trade, the controller de-
termines the amount to invest. For instance, if at time k∗

after a period of no trade there is a long signal, then a
long trade begins. Assuming no commissions and an account
value V (k∗), the initial investment is: I(k∗) = γ0V (k∗),
0 < γ0 ≤ 1. How to choose a suitable γ0 is currently an open
problem [1]; in this paper, we have used a training sequence
of previous data and the Kelly criterion, as exposed in the
following sections.

Once a long trade is entered, as the stock price goes from
S(k∗) to S(k∗+1) with return ρ(k∗) = S(k∗+1)/S(k∗)−1,
the account value becomes:

V (k∗ + 1) = V (k∗) + ρ(k∗)I(k∗)

and the amount invested is tuned with the rule:

I(k∗ + 1) = [1 +Kρ(k∗)]I(k∗), (4)

where K is the feedback gain: K = 1 is a ”buy and hold”
strategy until the position is open, that is the trade is started
with the initial amount and no action is performed, the
amount invested varies accordingly to the return of the stock.
Otherwise if K ̸= 1, for example K > 1, supplemental
money is invested in case of profit, or disinvested in case
of loss. As the trade evolves the amount invested is updated
according to (4). However a limit in the exposure is set via
a saturation condition:

I(k∗ + j) = γmaxV (k∗ + j) = Imax; j > 0.

Therefore, the actual investment evolves according to:

I(k∗ + j + 1) = min{[1 +Kρ(k∗ + j)]I(k∗ + j), Imax}.

For short trading the same formulas hold, but −1 ≤ γ0 < 0,
so I(k∗) < 0, and K < 0, therefore in this work short trading
means to buy an inverted stock. Since we use ETFs in our
simulations, inverted ETFs (or ETF short) will be the stocks
for going short, for example in trading the MSCI Emerging
Markets Index, EEM will be used for a long position, and
EUM for a short one; unfortunately it does not exist an
inverted ETF for every index used in this work.

A. The Kelly Criterion

As seen in the previous section, one of the open problem
of the trading system is the value to assign to γ0, that is what
fraction of capital to initially allocate to the risky investment
and how much to keep in cash. A possible choice can be the
optimal Kelly fraction [5] (also known as Latané strategy
[6]). The goal of this strategy is to maximize the growth
of the capital over the long term. Supposing to invest in m
trials and that the amount invested is I(k) = γ0V (k), then
the capital after m trials is:

Vm = V0(1 + γ0g)
S(1− γ0l)

F

where S and F are the number of successes and failures,
S + F = m, g is the gain and l is the loss during a single
trial. If 0 < l < 1, it is not possible to lose more than the
amount invested, and if 0 < γ0 < 1, Pr(Vm = 0) = 0 also
if l = 1.
Since

emln(Vm
V0

)1/m =
Vm

V0

ln(
Vm

V0
)1/m =

S

m
ln(1 + γ0g) +

F

m
ln(1− γ0l)

the last quantity measures the exponential rate of increase
per trial: for having growth this has to be greater than zero.
The Kelly criterion maximizes the expected value:

E{ln(
Vm

V0
)1/m} = E{ S

m
ln(1 + γ0g) +

F

m
ln(1− γ0l)}

pln(1 + γ0g) + qln(1− γ0l),

where p is the probability of gain, q = 1−p is the probability
of loss. The unique optimal fraction is hence:

γ0 =
pg − ql

gl
=

p(l + g)− l

gl
; pg − ql > 0. (5)

For the optimal value, the expected growth factor per trial
is:

plnp+ qlnq + pln(1 + g/l) + qln(1 + l/g).

It can be shown that the mean first passage time to arbitrary
large wealth targets is minimized, however the strategy is
very aggressive due to the volatility of the total return. Even
if all the parameters are exact, that is in absence of estimation
and chance errors, there is a very high volatility of wealth
levels, in fact the expected growth factor times m, gives the
natural logarithm of the median wealth, but the distribution
is dispersed [6].
In presence of estimation errors, owing to a high sensitivity
to the parameter values, either in the fraction, or in the
return, wrong estimates impact heavily on the actual return.
Investing a fraction greater than the optimal one may bring to
bankruptcy, so it is common to use a lower fraction, typically
a half, but the risk may be high anyway. Table I shows the
optimal Kelly fraction for values of gains and losses typical
of a betting system (l = 100%). The bettor knows with
certainty l and g, he has only to estimate his probability
of success p, hence he chooses the fraction to invest within
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TABLE I
OPTIMAL KELLY FRACTION (L=100%)

p of win\Gain 100% 200% 300% 400% 500%
20% 4%
30% 7% 13% 16%
40% 10% 20% 25% 28%
50% 25% 33% 38% 40%
60% 20% 40% 47% 50% 52%

one column of the table, where the variation of the values is
important but not dramatic.

For the stock investor all the parameters p, g and l are
unknown and he must estimate them. In table II the optimal
fraction is tabulated versus the gain and loss typical of a
single day trading system, assuming an optimistic probability
of gain p = 60%. The dispersion is huge (values greater than
one imply using leverage) passing from ”no trade” to a high
leveraged trade. Only for arbitrages the value of the gain and
the loss is almost certain.
For stock trading, where there is a continuum of outcomes,
it can be found that the optimal Kelly fraction to be used is:
γ0 = µ̂−r

σ̂2 , where r is the risk-free interest rate, however this
formula depends on the square of the estimated volatility, and
so the fraction undergoes high variations. The investor should
dynamically reallocate his resources as γ0 changes over time
because of fluctuations in the forecasts, but it could be a very
risky game.

TABLE II
OPTIMAL KELLY FRACTION (P=0.6)

Gain\Loss 0.50% 1.00% 1.50% 2.00% 2.50%
0.5% 4000%
1.0% 8000% 2000% 0%
1.5% 9333% 3333% 1333% 333%
2.0% 10000% 4000% 2000% 1000% 400%
2.5% 10400% 4400% 2400% 1400% 800%

The high yield bonds investor is in an intermediate situ-
ation, the optimal Kelly fraction for a 5 year investment is
shown in table III, 1− l is the recovery percentage, 1+g the
total amount in excess of a risk-free bond of similar maturity,
q the probability of default in the period. In November
2010 the ML Euro High Yield spread was about 500 basis
point, so the gain is roughly known, being unknown only the
reinvestment rate of the proceeds, here assumed to be zero.

TABLE III
OPTIMAL KELLY FRACTION (G=25%)

Default prob.\Recovery perc. 50% 40% 30% 20% 10%
25% 50% 25% 7%
20% 80% 53% 34% 20% 9%
15% 110% 82% 61% 46% 34%
10% 140% 110% 89% 73% 60%
5% 170% 138% 116% 99% 86%

III. THE PREDICTIVITY OF THE TRIGGER

In order to apply the Kelly criterion to the parameter γ0,
we investigated at first if the estimated return µ̂ is ”near”
the real return ρ. Unfortunately either for simulated or real
stock prices, the correlation coefficient between µ̂ and ρ is
low, from about 7% to 13%.

We next studied if the sign of the predicted return is
meaningfully predicted by the trigger. The following random
variable is defined: X = Sign(ρ)f , where f is the flag of
trading assuming value 1 for a long trade, -1 for a short
trade, and 0 for no trade. We assume as null hypothesis
that the trigger is unable to predict the sign of the return,
and it behaves like a source emitting symbols {−1, 0, 1}
with probabilities {q, r, p}. Given N+ the number of positive
or zero returns, N− the number of negative returns, N =
N+ + N−, if the output of the trigger is independent from
the sign of the return, then:

E{X}N = E{p(N+(1) +N−(−1)) + r(N+ +N−)(0)+

N
+q(N+(−1) +N−(1))

N
}

E{X}N = pp′ − qp′ − pq′ + qq′ = (p− q)(p′ − q′)

where E{N+/N} = p′, and E{N−/N} = q′ = 1− p′.
In the same manner for E{X2}:

E{X2}N = pp′+ qp′+ pq′+ qq′ = (p+ q)(p′+ q′) = p+ q

finally an upper bound for the variance is:

σ2
N = E{X2}N −E2{X}N = p+q−(p−q)2(p′−q′)2 ≤ 1

because p+ q ≤ p+ q+ r = 1 and (p− q)2(p′ − q′)2 = 0 if
p = q or p′ = q′. Fixing the significance level to 99%, m∗,
the margin of error to 1%, then N , the number of simulated
trades, has to be at least 66.349: N = ⌈(σz/m∗)2⌉. For every
set of parameters 5 simulations of different seed were run
involving 67.000 trials, the high number of trials justifies the
assumption of normality for E{X} [7]. The results show a
direct dependence on the drift to volatility ratio, and inverse
dependence on n. The null hypothesis is falsified, although
the predictivity is low. In table IV are reported the number of
predicted signs minus the unpredicted ones for some values
of the parameters.

Observing all the data available it can be seen that the
confidence level 1 − α is not an important factor, the
number of positive trade varies slowly with it, at least in
the range [0.80, 0.99]. Moreover, the dependence appears a
bit erratic. However a better choice seems to be from 0.8
to 0.9. Nevertheless, as shown in the following paragraph,
for volatile equities also a little number of good trades may
lead to important differences. It should be remarked that the
values of the window width n and of the confidence level are
kept fixed over all the trading time, without adapting them
to the particular moment.

Using real indexes predictivity seems to improve, as it
can be seen from table V for the S&P500 Index from 1950
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TABLE IV
NUMBER OF PREDICTED MINUS UNPREDICTED RETURN SIGNS

n Pred-Unpr % Ê{X}N µ/σ y.
60 5,585 9.1% 0.6% 0.5

110 4,084 6.6% 0.7% 0.5
160 3,415 5.5% 0.9% 0.5
210 3,341 5.4% 1.0% 0.5

60 6,399 10.3% 2.0% 1.0
110 4,782 7.7% 2.6% 1.0
160 4,267 6.7% 2.9% 1.0
210 3,822 6.0% 3.3% 1.0

60 7,918 12.4% 6.8% 2.0
110 7,272 11.2% 8.3% 2.0
160 7,467 11.4% 9.0% 2.0
210 6,889 10.4% 9.5% 2.0

to February 2010 and the EEM ETF replicating the MSCI
Emerging Markets index, from April 2003 to February 2010.

However, for the choice of γ0, the predictive power of the
trigger does not appear sufficiently strong to use the Kelly
criterion, which is so sensitive to the parameters estimates.

TABLE V
PERCENTAGE OF PREDICTED MINUS UNPREDICTED RETURN SIGNS

Index 60 110 160 210 µ/σ y.
S&P 500 1950-2010 10.9% 9.8% 8.4% 7.8% 0.53
S&P 500 2003-2010 10.3% 11.3% 8.9% 7.7% 0.25
EEM 2003-2010 13.4% 10.1% 9.1% 8.7% 0.70

After investigating the predictive capability of the trigger
for a single day of trading, we studied its capacity to identify
a trend through an empirical study. Figure 1 shows the
behavior of the trigger in detecting the trends for the EEM
ETF. With n = 60, the trigger identifies reasonably well the
trends, however it lacks precision in marking periods of side
movements, where a signal of ”no trade” would be desirable.
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Fig. 1. EEM and Trading flag, f=1 long, f=-1 short, f=0 no trade; n=60

Finally, a return comparison using markets data was con-
ducted between the Barmish system with gain K = 1, γ0 = 1
and γmax = 1, and a system based on a classical technical

analysis indicator [8], a moving average of equal width. The
first one outperforms the moving average strategy almost
always, the results for EEM are in table VI.

TABLE VI
BARMISH SYSTEM VS MOVING AVERAGE, FINAL TRADED VALUES

n Barmish Mov. Avg.
60 23.3 17.6
90 31.8 22.6

120 18.6 27.9
150 38.1 21.7
180 44.8 22.8

IV. OPTIMIZING THE PARAMETERS AND THE TRIGGER

Simulations on the Ito process and real markets data were
run at first to study the sensitivity of the final traded value
to the parameters, and then to try an optimization of them,
moreover some modifications were introduced in order to
take into account the results about the trigger described in the
preceding paragraph. Transaction costs and bid-ask spreads
were not considered.

A. The window width n and the confidence level

As previously seen the window width is very important for
the process of triggering. n in the range of 50 - 80 captures
well the trends for volatile equities, like a single stock or an
exotic index, but side movements usually are not detected,
so the system may incur in important losses, particularly
if the controller gain K is greater than one. Increasing the
window width n reduces the jitter and enhances the results,
even if sometimes the results are inferior to a ”buy and hold”
strategy.

TABLE VII
EEM FINAL TRADED VALUE FOR CONFIDENCE LEVEL AND WINDOW

WIDTH (EEM FINAL VALUE 38.4; K=0.2)

n 80% 90% 95% 99%
60 28.0 26.4 26.7 26.6
70 32.9 36.4 40.0 40.4
80 47.4 48.9 50.4 44.0
90 35.2 37.3 43.2 40.8

100 32.4 36.8 37.5 38.8
110 33.2 34.8 34.7 38.4
120 20.7 21.9 26.1 33.2
130 25.8 25.9 29.4 32.7
140 56.3 51.2 37.5 35.8
150 46.4 45.1 45.6 45.5
160 47.3 45.1 40.8 47.5
170 43.5 45.9 48.1 42.4
180 49.7 49.3 47.8 44.9

In pictures 2 - 5 the first subplot shows the value of
S&P500 and EEM from April 2003 to February 2010, and
the subplots below the values V (k) of the trading system for
different values of n, and for K = 0.2, α = 0.1. In order to
compare the series it is supposed that the entry value V (0)
is equal to the value of the index in the first day of trading.
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It can be seen very well that 180 days is a good choice for
n, but not the best one, which is 140, as shown in table VII,
however the final traded value varies abruptly with n (e.g. n
from 120 to 140).
Moreover even if 1 − α rarely is an important factor, i.e.
the number of triggered trades is almost insensitive to it, the
outcomes during high volatility periods dramatically change.
Finally another fact emerges from the observation of the
subplots, the optimal n changes during the time of trading, it
is as if the financial signal varies his time constant: for EEM
the last rising trend is well caught by the 90 days system,
while the collapse of fall 2008 is matched for n = 180 and
almost ignored for n = 120, while for S&P500 the 90 days
system is unable to exploit both the trends, so the usefulness
of a pre-optimization on the last n data [1] seems doubtful.
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Fig. 2. S&P500 - Index value and traded values, n=60,90,120
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Fig. 3. S&P500 - Index value and traded values, n=150,180,210

B. The gain K and γ0

The preceding results were found with K = 0.2, greater
values of K often decreases the return, but this is true only
for the last years. For S&P500 a K near to one was found
optimal in previous times. A K greater than one can cause
huge losses during financial turbulences, for firm shares like
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Fig. 4. EEM - ETF quote and traded values, n=60,90,120
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Fig. 5. EEM - ETF quote and traded values, n=150,180,210

investment banks during the 2008 crisis. Owing to the low
predictivity of the trigger over a single day it is very likely
to encounter a sequence where a high portion of the capital
is invested in ”bad days” and almost nothing in ”good days”
leading to early bankruptcy. It was investigated also if there
is a convenience to use two gains, KL for long positions,
KS for short positions, the motivation liying in the different
behavior of financial markets during rising and falling cycles
summarized by the expressions ”Up a staircase, down an
elevator” and ”The bull walks up the stairs and the bear
jumps out the window.” However, no evidence was found
to introduce two gains, but improvements were obtained
modifying the trigger only with falling markets. Finally, the
best results were obtained with a value of γ0 = ±1, in index
trading it seems the optimal choice, being relatively small
the risk of a huge loss, in practice the purchase of options
out of the money will hedge the position partially.

C. The integrative controller and the reverting to the mean
process

The trigger is partially able to predict a single positive
trade, but detects pretty good the trends, so it was introduced
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an integrative part in the controller. The amount invested
for a trade beginning at time k∗ is modulated by the
algebraic sum of the preceding l gains. However, there is
no advantage to use this technique. After this simulation, we
tested taking K > 0 during a short trade, i.e. a rising amount
was invested proportionally to losses. Surprisingly, the final
traded value increased for some stocks, most of the positive
trades happened near the minimum following the 2008 crisis
confirming the mean reversion of stock prices [3] and the
profitability of the ”contrarian” strategy in some occasions.

D. Improving the trigger

We have attempted to use the estimated volatility to detect
anomalous changes in the quotations. Within a frame of long
trading, the relative deviation of the current price versus the
maximum in the frame is compared with a multiple of the
volatility. If the deviation exceeds the bound then a short
trade is triggered:

• if during a long trade beginning at k = k∗

S(k)

Smax
− 1 < −zLσ̂

√
∆t; Smax = max

k≥k∗
[S(k)]

then a short trade is triggered.

As usual zL is set out in order to maximize the final value.
We have tried also to detect anomalous deviations within a
short trading, but the rule is not effective.

TABLE VIII
FINAL TRADED VALUES (FINAL VALUES: EEM 38.4, S&P500 1,100)

EEM S&P500
n Barm. Mod. Barm. Barm. Mod. Barm.

60 23.3 23.2 1,074 1,135
70 32.5 32.7 1,019 1,121
80 43.0 47.6 1,037 1,138
90 31.8 39.5 997 1,025

100 32.2 37.1 1,163 1,147
110 31.2 36.5 1,472 1,511
120 18.6 22.0 1,505 1,523
130 21.2 27.0 1,337 1,337
140 41.8 51.5 1,284 1,299
150 38.1 37.1 1,514 1,582
160 38.0 32.0 1,543 1,551
170 37.1 31.8 1,492 1,485
180 44.8 45.3 1,783 1,710
190 41.5 44.1 1,632 1,648
200 34.8 37.3 1,372 1,333
210 34.6 37.1 1,318 1,275

Table VIII shows the final traded values for EEM and
S&P500 with the Barmish trading system and with the mod-
ified trigger. In the simulation K = 1 (the shares are bought
and sold only at triggering times, reducing dramatically the
penalty for transactions costs and bid-ask spreads), α = 0.1,
zL = 4.5. In most cases results improve, especially for the
volatile EEM. The period of trading is April 2003 - February
2010.

V. TESTING WITH OTHER STOCKS

After the optimization, a series of tests were performed
with other indexes and also with stocks for which the system
was not designed: commodities and interest rates, which are
better described by a mean reverting process like (3). At
first were tested the analogues for Europe of the S&P500
and of the MSCI Emerging Markets index: the S&P350
Europe and S&P Emerging Europe index, replicated by the
ETFs IEV and GUR. It can be objected that EEM and GUR
holds some equities in common, Gazprom for example, it
is true only in little part but it is not essential: many stock
indexes are strongly correlated, however trading systems,
like the one proposed, perform differently with them. The
period under study is from the end of March 2007 to the
first half of November 2010, so partially overlaps the one
in the previous simulation. The values of the parameters are
the same: α = 0.1, K = 1, zL = 4.5. Comparing table IX
with table VIII it can be seen that the results found before
are substantially confirmed:
- the modified trigger performs better for GUR, more
volatile than IEV;
- the return depends strongly on n and it shows roughly
the same dependence with n; this matter needs further
investigation;
- the traded value is almost always better than the ETF
value, so the systems works better for GUR and IEV than
for EEM and S&P500.

TABLE IX
FINAL TRADED VALUES (FINAL VALUES: GUR 46.7, IEV 38.4)

GUR IEV
n Barm. Mod. Barm. Barm. Mod. Barm.

60 35.6 46.1 50.6 56.2
70 74.4 81.3 66.9 75.8
80 96.1 92.0 52.3 56.4
90 54.0 57.2 44.0 44.7

100 66.0 78.9 55.8 54.3
110 64.5 67.1 64.7 65.6
120 70.3 71.0 67.1 67.6
130 52.7 55.0 62.3 61.7
140 101.8 102.7 73.7 69.4
150 63.5 73.7 89.7 84.5
160 47.2 57.7 61.6 57.7
170 52.3 63.0 55.2 50.8
180 63.5 78.2 49.8 45.9
190 55.0 65.6 40.9 36.9
200 54.9 68.2 30.0 29.4
210 73.0 81.5 31.0 30.8

As before, the lack of performance occurs sometimes for
nearby values of n: picture 6 shows the GUR stock price
and the traded values for n = 130 and 140. In the first
case the two periods of side movements before the great
fall are misinterpreted by the trigger. This fact is highlighted
also in picture 1. The better short trades for n = 140 are
not determinant, they are counterbalanced by the undetected
bounce back. Almost the same happens for IEV, the two
periods of size movements are undetected, and there is a
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delay in recognizing the decreasing trend.
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Fig. 6. GUR - ETF quote and traded value, n=130,140, modified trigger

The similar returns dependence on n between GUR and
EEM, IEV and S&P500 is probably due to the partial
overlapping of the trading periods, in fact different results
come out considering different periods: for IEV in the
period from August 2000 to March 2004 the best values for
n are 120 and 130, instead of 140 and 150; for S&P500
from March 1960 to December 1966 the best values are 90
and 100, instead of 180 and 190. The same thing has been
found also for other indexes.
So, as stressed in the preceding section, the optimal n
changes relatively fast, however usually there is a range of
suboptimal values, this range changes too, but more slowly.

The system was then tested with commodities and
interest rates, the mathematical models are different for
them, however as the trading system has shown a different
behavior with stock indexes, it has believed appropriate
to try. The commodities considered were: gold, natural
gas, S&P GSCI Commodities Index, for interest rates was
chosen the Barclays Capital U.S. 20+ Year Treasury Bond
index, among the ETFs replicating them there are: GLD,
UNG, GSP and TLT.

In picture 7 it can be seen how UNG, GSP and TLT show
the typical empirical behavior described in literature [9]:
the tendency to move between levels. Such patterns should
be easily detectable by the system. However, occasionally
there are disturbing movements for the trigger which are
significantly larger and seems to be jumps as for TLT.
Table X shows the results of the simulations. ”Extra return”
is defined as the relative deviation between the final traded
value and the final stock value, V (kfin)/S(kfin)− 1. Extra
returns are very good for natural gas and the commodities
index, for natural gas they are extreme for all the values of
n, the reason is that the quote has collapsed relative to the
maximum, and the decreasing trend is correctly detected by
the modified trigger. However, before the beginning of the
fall the traded values are near the ETF price for almost all
the values of n. Instead jumps, volatility and similar levels
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Fig. 7. UNG, GSP and TLT - ETF quote

are responsible of the loss for TLT.

TABLE X
TRADING SYSTEM RESULTS

Ticker System type n Extra return Period
UNG Mod Barm 110 30.97 04/18/07 - 11/16/10
GSP Mod Barm 60 2.81 04/18/07 - 11/16/10
TLT Barm 90 0.04 04/18/07 - 11/16/10
GLD Barm 150 -0.25 11/18/03 - 11/16/10

Unfortunately GLD is one of worst stock, in picture 8 is
plotted the trading flag and the results of the trading, the
loss is caused by the wrong short trades at the onset of the
volatile rising trend around day 1000, moreover after that
there is a period of uncertain trades.
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Fig. 8. GLD - ETF quote, traded value and trading flag

VI. CONCLUSIONS

A. Conclusions

This paper has analyzed several variations around the
Barmish and Iwarere trading system. The system is com-
posed by a trigger and a controller: it has been found that
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the trigger shows some predictivity and the outcomes of
the whole system are usually good with moderate volatility
indexes, like S&P500, and less good with more volatile
indexes, especially with firm shares.
Many simulations were run to optimize parameters. The win-
dow width n is the most important. However, an optimization
with a short learning sequence is not opportune, in fact the
optimal n changes and it cannot be estimated preemptively,
so it is better to use a suboptimal value but such to guarantee
robustness.
The confidence level 1−α is not determinant for non volatile
stocks and it is difficult to optimize. Moreover the controller
gain K has to be kept low or moderate, K ≤ 1.
Eventually, we introduced a change in the trigger in order
to detect the inversion of a rising trend. The attempt was
successful, especially for volatile indexes. The final versions
were tested also with commodities and interest rates indexes.
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