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Abstract—Forecasting future values of economic variables 

are some of the most critical tasks of a country. Especially the 

values related to foreign trade are to be forecasted efficiently 

as the need for planning is great in this sector. The main 

objective of this research paper is to select an appropriate 

model for time series forecasting of total import (in taka crore) 

of Bangladesh. The decision throughout this study is mainly 

concerned with seasonal autoregressive integrated moving 

average (SARIMA) model, Holt-Winters’ trend and seasonal 

model with seasonality modeled additively and vector 

autoregressive model with some other relevant variables. A 

try was made to derive a unique and suitable forecasting 

model of total import of Bangladesh that will help us to find 

forecasts with minimum forecasting error. 

 
Index Terms—Arima model,  forecasting accuracy Holt 

Winters’ trend and seasonality method, Out of sample 

accuracy measurement.VAR model. 

 

I. INTRODUCTION 

An important economic concept involves international 

trade and finance. International trade in goods and services 

allows nation to raise their standards of living by exporting 

and importing goods and services. In a modern economy 

the economic condition is highly affected by the amount of 

its foreign trade and its balance of trade. Imports, along 

with exports, form the basis of trade. Bangladesh has had a 

negative trade balance since its independence, and the gap 

between export and import are still widening.  The country 

is importing a lot of goods from the foreign countries and 

the aim of this paper is to find a forecasting model that will 

help us to get ideas about the future values of total import 

of Bangladesh. 

II. DATA AND VARIABLES 

This study is conducted on total import of Bangladesh. 

The data set have 133 observations, during the time period 

July 1998 to July 2009, in the initialization set and 14 

observations, during the time period August 2009 to 

September 2010, in the test set. For vector autoregressive 

model two more variables- total export and net foreign 

asset, are also used. The data were obtained from the 

following sources for validation: 

1) Statistical Department of Bangladesh Bank 

2) ‘Economic Trends’, a monthly report published by 

Bangladesh Bank. 
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III. METHODOLOGY 

 In this study three methods are used, i.e. seasonal 

ARIMA model, Holt Winters’ trend and seasonality 

method and vector autoregressive model. The goal is to 

find an appropriate model that has both in sample and out 

of sample forecasting errors as small as possible.  

A.  Arima Model 

A model containing p autoregressive terms and q 

moving average terms is classified as ARMA(p,q) model. 

If the series is differenced d times to achieve stationary, the 

model is classified as ARIMA(p,d,q), where the symbol ‘I’ 

signifies ‘integrated’. The equation for the ARIMA (p, d, q) 

model is as follows: 

𝑌𝑡 = 𝑐 + 𝑎1𝑌𝑡−1 + 𝑎2𝑌𝑡−2 +  … . +𝑎𝑝𝑌𝑡−𝑝 + 𝑒𝑡 − 𝑏1𝑒𝑡−1 −

𝑏2𝑒𝑡−2 − … . 𝑒𝑡−𝑞                                                                       (1) 

 Or, in backshift notation: 

 1 − 𝑎1𝐿 − 𝑎2𝐿
2 − … . 𝑎𝑝𝐿

𝑝  1 − 𝐿 𝑌𝑡
= 𝑐

+  1 − 𝑏1𝐿 − 𝑏2𝐿
2

− … . −𝑏𝑞𝐿
𝑞 𝑒𝑡                  

                                                                                    (2) 

The ARIMA notation can be extended readily to handle 

seasonal aspects, and a Seasonal ARIMA (p,d,q)(P,D,Q) or 

SARIMA model can be represented as- 

 𝐿 − 𝐿2 − 𝐿3 − … 𝐿𝑑  1 − 𝐿𝑆 − 𝐿2 𝑆 − …… 𝐿𝐷 𝑆   1

− 𝑎1𝐿 − 𝑎2𝐿
2 − … 𝑎𝑝𝐿

𝑝 (1

− 𝐴1𝐿 − 𝐴2𝐿
2 …𝐴𝑃𝐿

𝑃)𝑌𝑡
=  1 − 𝑏1𝐿 − 𝑏2𝐿

2 − … . −𝑏𝑞𝐿
𝑞  1

− 𝐵1𝐿 − 𝐵2𝐿
2 − …− 𝐵𝑄𝐿

𝑄          

 (3) 

B.   Holt Winters Trend and Seasonality Method 

The Holt-Winters’ method is based on three smoothing 

equations-one for the level, one for trend, and one for 

seasonality. In fact there are two different Holt-Winters’ 

methods, depending on whether seasonality is modeled in 

an additive or multiplicative way. The basic equations for 

Holt-Winters’ multiplicative method is as follows: 

Level: 𝐿𝑡 = 𝛼
𝑌𝑡

𝑆𝑡−𝑠
+  1 − 𝛼  𝐿𝑡−1 + 𝑏𝑡−1              (4) 

Trend: 𝑏𝑡 = 𝛽 𝐿𝑡 − 𝐿𝑡−1 +  1 − 𝛽 𝑏𝑡−1                 (5) 

Seasonal:  𝑆𝑡 = 𝛾
𝑌𝑡

𝐿𝑡
+  1 − 𝛾 𝑆𝑡−𝑠                            (6) 

Forecast: 𝐹𝑡+𝑚 =  𝐿𝑡 + 𝑏𝑡𝑚 𝑆𝑡−𝑠+𝑚                          (7) 
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where, s is the length of seasonality (e.g. number of month 

or quarter in a year). 𝐿𝑡  represents the level of the series, 𝑏𝑡  

represents the trend, 𝑆𝑡  is the seasonal component, and 

𝐹𝑡+𝑚  is the forecast for m period ahead. The first two 

equations for additive model are identical to the first two 

equations of the multiplicative method. The only difference 

is in the third equation, that is the seasonal indices are now 

added and subtracted i.e.: 

Seasonal:  𝑆𝑡 = 𝛾(𝑌𝑡 − 𝐿𝑡) +  1 − 𝛾 𝑆𝑡−𝑠                         (8) 

C. VAR Model 

In a VAR model I have to include the variables which 

have bilateral causality with each other. A VAR model 

consists of a set of variables 𝑌𝑡 =  𝑌1𝑡 , 𝑌2𝑡 , … , 𝑌𝐾𝑡  which 

can be represented as: 

𝑌𝑡=𝛼 + 𝐴1𝑌𝑡−1 + 𝐴2𝑌𝑡−2 + … + 𝐴𝑝𝑌𝑡−𝑝 + 𝑢𝑡                    (9) 

With 𝐴𝑖  are (K×K)   coefficient matrix for i=1,2,….p and 

𝑢𝑡  is a K dimensional process with E( 𝑢𝑡) = 0  and 

covariance matrix 𝐸 𝑢𝑡𝑢𝑡
𝑇 = ∑𝑢 .If  𝑌𝑡 ’s are cointegrated 

the VAR model can be rewritten as VECM: 

𝛥𝑌𝑡 = 𝛱𝑌𝑡−𝑝 + ∑ 𝛤𝑖
𝑃−1
𝑖=1 𝛥𝑌𝑡−𝑖 + 𝑢𝑡                                   (10) 

where 

𝛱= – (I– 𝐴1 − 𝐴2 … 𝐴𝑝) and 𝛤𝑖 = −(𝐼 − 𝐴1 − 𝐴2 … 𝐴𝑖) 

If the coefficient matrix Π has reduced rank r < k, then 

there exist k × r matrices α and β each with rank r such that 

Π = α β΄ and β΄ 𝑌𝑡  is stationary. r is the number of 

cointegrating relations and each column of β is the 

cointegrating vector. 

D.  Comparison among the forecasting methods 

To make comparison among the methods some well 

known measures of forecast error are used. The model that 

gives the minimum measures of these errors will be the 

expected model for further forecasting. The measures used 

are cited below; 

Mean Error (ME): The mean error gives the average 

forecast error, i.e. : 

𝑀𝐸 =
1

𝑛
 𝑒𝑡

𝑛

𝑖=1

 

where, 𝑒𝑡 = 𝑌𝑡 − 𝐹𝑡  

𝑌𝑡 = The observation at time t, 𝐹𝑡 =Forecasted value at 

time t, n= the number of observation. 

Mean Absolute Error (MAE): The MAE is first defined 

by making each error positive by taking its absolute value, 

and then averaging the result, i.e. : 

𝑀𝐴𝐸 =
1

𝑛
 |𝑒𝑡

𝑛

𝑖=1

| 

 Mean Squared Error (MSE): The MSE is defined as 

𝑀𝑆𝐸 =
1

𝑛
 𝑒𝑡

2

𝑛

𝑖=1

 

Mean Percentage Error (MPE): The MPE is the mean of 

the relative or percentage error and is given by: 

𝑀𝑃𝐸 =
1

𝑛
∑ 𝑃𝐸𝑡

𝑛
𝑖=1  ; where 𝑃𝐸𝑡=

𝑌𝑡−𝐹𝑡

𝑌𝑡
×100 is the relative 

or percentage error at time t. 

Mean Absolute Percentage Error (MAPE): The MAPE is 

defined as: 

𝑀𝐴𝑃𝐸 =
1

𝑛
 |𝑃𝐸𝑡

𝑛

𝑖=1

| 

E.  Out of Sample Accuracy Measurement 

The summary statistics described so far measures the 

goodness of fit of the model to historical data. Such fitting 

does not necessarily imply good forecasting. An MSE or 

MAPE of zero can always be obtained in the fitting phase 

by using a polynomial of sufficiently high order. These 

problems can be overcome by measuring true out of 

sample forecast accuracy. That is, the total data are divided 

into an ‘initialization’ set and a ‘test’ set or ‘holdout’ set. 

Then the initialization set is used to estimate any 

parameters and to initialize the method. Forecasts are made 

for the test set. The accuracy measures are computed for 

the errors in the test set only. 

 

IV. ANALYSIS OF DATA 

The initialization set of the data has 133 data points, 

starting from July 1998 to July 2009. The first step of the 

analysis is to plot the whole dataset to visualize the nature 

of it. The time plot for total import (in taka crore) of 

Bangladesh is shown in the figure given below: 

 

Figure 1: Time series plot for actual data 

A.  ARIMA Model 

From Figure 1 it can be seen that the data had an upward 

trend but from October 2008 it started to show a downward 

trend. From simple view of the plot we can have idea about 

non stationarity in mean but stationarity in variance. To be 

surer about stationarity of the data, Augmented Dickey 

Fuller test was conducted. The calculated value of Dickey 

Fuller is -2.0622 with P value .5506 at suggested lag 5. So, 

we fail to reject the null hypothesis of   nonstationary.                                                                                                                     

The PACF of the data and ACF of the first differenced data 

are: 
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(b) 

Figure 2: PACF of original data (a) and ACF of first differenced data (b) 

 

From the PACF plot it can be seen that the partial 

autocorrelation at lag 12 is insignificant and so are at 

further seasonal lags (i.e. 24, 36 etc.). So, it can be 

assumed that the data does not have strong seasonality.  

To obtain stationarity the original data are differenced at 

order one. As the data set do not have strong seasonality, a 

first order non seasonal difference is taken rather than a 

seasonal difference and ADF test is conducted again. The 

value of Dickey Fuller for the first differenced data is -

5.3819 with P value less than .01 at suggested lag 5. This 

clearly indicates that our data is now stationary. The ACF 

plot of the first differenced data shows significant spikes at 

lag 12, which gives a clear indication that a seasonal term 

must be included in the model. To be sure about the form 

of the appropriate model, the AIC and BIC values are 

checked for all the probable models and it is found that 

ARIMA (0,1,1,)(1,0,0)[12] model has the smallest AIC and 

BIC values, so, this model should be the desired ARIMA 

model. The estimated ARIMA (0,1,1) (1,0,0)12 model is 

given below: 

𝑀 𝑡 = 0.4733𝑀𝑡−12 − 𝑀𝑡−1 + 0.4733𝑀𝑡−13 +
.5088𝑒𝑡−1                                                                         (11) 

 

Figure 3: Point and interval forecasting with ARIMA (0,1,1)(1,0,0)12 

model 

The value of Box-Pierece Q statistic 30.6526 is with 

degrees of freedom 42 with P value .9026 at lag 44. So, the 

null hypothesis that residuals of ARIMA (0,1,1)(1,0,0)12 

model are white noise is failed to reject . Again the value 

of Ljung-Box Q statistic 36.4945 is with degrees of 

freedom 42 with P value 0.7107 at lag 44. So, it can be said 

that the residuals are white noise for 

ARIMA(0,1,1)(1,0,0)12 model.  The plot of forecasted 

value along with the original time series is shown in Figure 

3. 

B. Holt Winters Trend and Seasonality Method 

To initialize the Holt-Winters’ forecasting method, 

initial values of the level 𝐿𝑡 , the trend 𝑏𝑡 , and the seasonal 

indices 𝑆𝑡  are needed. To determine initial estimates of the 

seasonal indices 12 data points were used as the data set is 

monthly. The estimated model is- 

 

𝐿𝑡 = .3925046 𝑀𝑡 − 𝑆𝑡−12 +  1 − .3925046  𝐿𝑡−1 +
𝑏𝑡−1                                                                                 (12) 

𝑏𝑡 = 𝑏𝑡−1                                                                         (13) 

𝑆𝑡 = 0.8301905 𝑀𝑡 − 𝐿𝑡 + (1 − 0.8301905)𝑆𝑡−12    (14) 

 

The plot of forecasted value obtained from Holt Winters 

model is given below- 

 

 

Figure 4: Point and Interval Forecasts obtained from Holt-Winters Model 

C.  VAR Model 

To fit a VAR model, at first a try was made to find 

relevant variables that have bilateral causality with total 

import of Bangladesh as well as with each other. Primarily 

5 variables were chosen. They are -total export, net foreign 

asset, domestic credit, exchange rate and inflation rate. 

Among these variables it was found that only total export 

and net foreign asset have bilateral relationship with each 

other as well as with total import. The results or Granger 

causality tests are given below: 

 
TABLE I: RESULT OF GRANGER CAUSALITY TEST 

relationship Lag F-statistic P-value 

Export→Import 3 3.1070343 2.901318e-02 

Import→Export 3 7.5056727 1.180776e-04 

NFA→Import 5 2.582494 2.966103e-02 
Import→NFA 5 2.460508 3.696343e-02 

Export→Import 9 2.758777 0.0061726486 

Import→Export 9 2.954010 0.0036209259 
NFA→Export 9 3.881317 0.0002814135 

Export→NFA 9 2.346345 0.0187481360 

 

So, it can be assumed that total export and net foreign 

asset can be used as endogenous variables with total import 

in the desired VAR model. The natural log forms of all the 

three variables are taken and for dealing with seasonality 

all the three variables are seasonally adjusted by the 
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classical multiplicative decomposing method. The 

modified data set are then analyzed.  

As all the three variables are found I (1), Johansen 

cointegration test is conducted to check the existence of 

cointegration and  as at lag 2 the model gives the smallest 

AIC, FP and HQ values, it is fitted with lag 2 and the 

results are- 
 

TABLE II: RESULT OF JOHANSEN COINTEGRATION TEST BASED ON TRACE 

STATISTICS 

Null 

hypothesis 

Test 

statistics 

10 percent 
critical 

value 

5 percent 
critical 

value 

1percent 

critical value 

     

r ≤ 2 7.69 7.52 9.24 12.97 
r ≤ 1 19.53 17.85 19.96 24.60 

r = 0 63.62 32.00 34.91 41.07 

 

TABLE III: RESULT OF JOHANSEN COINTEGRATION TEST BASED ON 

MAXIMUM EIGEN VALUE STATISTICS 

Null 

hypothesis 

Test 

statistics 

10 percent 

critical  

5 percent 

critical  

1percent 

critical value 

  value value  

r ≤ 2 7.69 7.52 9.24 12.97 

r ≤ 1 11.83 13.75 15.67 20.20 
r = 0 44.09 19.77 22.00 26.81 

 

 Both of the above procedures reveal that there is one 

cointegrating relationship among the variables. So, the rank 

of 𝛱 in the equation 10 is 1. This model is then converted 

into level VAR (using R statistical software’s package vars) 

for forecasting.  The coefficient matrix of the first order 

lagged variables of the estimated model is- 

 
0.3953967 −0.09113555 −0.02662601
0.1315107 0.39966812 0.20584631

 −0.1271218 0.12755932 1.08941860
  

And the coefficient matrix for the second order lagged 

variables is- 

 
−0.03251774 0.59662961 0.1255279
−0.03792212 0.52607838 −0.2203743
0.02665503 −0.04784865  −0.0738229

  

Coefficient matrix of deterministic repressor is- 

 
0.45949625

 −0.05045786
0.08285586

  

At lag 31, asymptotic Portmanteau test has the Chi-

Square value 270.3135 with P value 0.6811, and the 

adjusted Portmanteau test has Chi-Square value 312.037 

with P value 0.1056.So, the model has white noise 

residuals.  

The value of Chi-Squared for the multivariate ARCH 

test at lag 5 is 203.1458 with P value 0.1139. So, no 

conditional heteroscedasticity is present in this model.  

The forecasted values of the model are then back 

transformed to get the forecasted values of total imports of 

Bangladesh.  

The plot of original data and forecasted values is: 

 

 
Figure 5: Point and Interval Forecasts obtained from VAR model 

 

V. COMPARISON AMONG ARIMA, HOLT WINTERS 

TREND AND SEASONALITY METHOD AND VAR MODEL 

The forecasting performance of these three models have 

been compared with each other with respect to different 

measures of error and the summary measures are listed in 

the table IV- 

 
TABLE IV: IN SAMPLE ERROR MEASURES OF THE METHODS 

Measures of 
Error 

ARIMA 
(0,1,1)(1,0,0)12  

Holt-Winters’ 
Method 

VAR 
Model 

    
ME 58.61606930 80.57279 29.68408 

MAE 588.55960438 676.039 630.97 

MSE 671123.9 808836.5 789098.7 

MPE 0.01089789 0.08561744 -0.542072 

MAPE 9.48140336 10.56153 9.230532 

 

In sample error measures don’t necessarily imply good 

forecasting model. To find which forecasting method is 

better, true out of sample forecast accuracy was measured. 

The plot of the test set observations with the forecasted 

values using all three methods is given - 

 
Figure 6: Plot of test set of the data and forecasted values obtained from 

the three methods 
 

The out of sample accuracy measures are given below: 
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TABLE V: OUT OF SAMPLE ACCURACY MEASUREMENTS 

Measures 

 of Error 

ARIMA 
(0,1,1)(1,0,0)

12 

Holt-
Winters’ 

Method 

VAR Model 

ME 3350.570 2712.007 291.0543 

MAE 3477.229 2815.95 1210.929 

MSE 15747374 10227508 2379564 

MPE 61.09258 17.79637 1.079790 

MAPE 22.97802 18.72796 8.209862 

 

 From the above table it is clear that VAR model is 

giving minimum values for all the measures of forecast 

error. So, one may take VAR model of total import, total 

export and net foreign asset as an appropriate model for 

forecasting total import of Bangladesh. 

VI. CONCLUSION 

The basic aim of this paper is to select an appropriate 

model that will be helpful for understanding future 

behavior of total import of Bangladesh. Three methods are 

used- seasonal ARIMA, Holt-Winters’ trend and 

seasonality method and VAR model. Various measures of 

forecasting accuracy were also measured for all the three 

models. The comparison shows that VAR model of total 

import with total export and net foreign asset as other 

endogenous variables is better than the other two methods 

as it is producing both in sample and out of sample 

forecasting errors. But this is not the end. More researches 

have to be done to handle seasonality in a better way and to 

find the more relevant variables that are useful for 

forecasting total import of Bangladesh. 
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